Function reference
- 
          
          
terntern-package - tern Package
 
- 
          
          
formatting_functions - Additional Formatting Functions
 
- 
          
          
kaplan_meier - Kaplan-Meier Plot
 
Control Functions
Control functions capture options in lists, and take care of defaults (and if it makes sense also checks). They avoid cluttering of function signatures with long lists of single arguments.
- 
          
          
control_coxph() - Control Function for 
CoxPHModel 
- 
          
          
control_coxreg() - Controls for Cox regression
 
- 
          
          
control_incidence_rate() - Control function for incidence rate
 
- 
          
          
control_lineplot_vars() - Control Function for g_lineplot Function
 
- 
          
          
control_logistic() - Control Function for Logistic Regression Model Fitting
 
- 
          
          
control_step() - Control Function for Subgroup Treatment Effect Pattern (STEP) Calculations
 
- 
          
          
control_summarize_vars() - Control Function for Descriptive Statistics
 
- 
          
          
control_surv_time() - Control Function for 
survfitModel for Survival Time 
- 
          
          
control_surv_timepoint() - Control Function for 
survfitModel for Patient's Survival Rate at time point 
Statistics Functions
Statistics functions should do the computation of the numbers that are tabulated later. In order to separate computation from formatting, they should not take care of rcell type formatting themselves.
- 
          
          
s_compare()a_compare()create_afun_compare()compare_vars() - Compare Variables Between Groups
 
- 
          
          
h_count_cumulative()s_count_cumulative()a_count_cumulative()count_cumulative() - Cumulative Counts with Thresholds
 
- 
          
          
s_count_nonmissing()d_count_missed_doses()s_count_missed_doses()a_count_missed_doses()count_missed_doses() - Counting Missed Doses
 
- 
          
          
s_count_occurrences()a_count_occurrences()count_occurrences() - Occurrence Counts
 
- 
          
          
h_append_grade_groups()s_count_occurrences_by_grade()a_count_occurrences_by_grade()count_occurrences_by_grade()summarize_occurrences_by_grade() - Occurrence Counts by Grade
 
- 
          
          
s_count_patients_and_multiple_events()summarize_patients_events_in_cols() - Counting Patients and Events in Columns
 
- 
          
          
s_count_patients_with_event()a_count_patients_with_event()count_patients_with_event()s_count_patients_with_flags()a_count_patients_with_flags()count_patients_with_flags() - Count the Number of Patients with a Particular Event
 
- 
          
          
s_count_values()count_values()a_count_values() - Counting Specific Values
 
- 
          
          
h_coxreg_univar_formulas()h_coxreg_multivar_formula()fit_coxreg_univar()tidy(<summary.coxph>)h_coxreg_univar_extract()tidy(<coxreg.univar>)fit_coxreg_multivar()h_coxreg_multivar_extract()tidy(<coxreg.multivar>)s_coxreg()summarize_coxreg() - Cox Proportional Hazards Regression
 
- 
          
          
s_cox_univariate() - Cox regression including a single covariate - summarized results
 
- 
          
          
d_onco_rsp_label()s_length_proportion()a_length_proportion()estimate_multinomial_response() - Estimation of Proportions per Level of Factor
 
- 
          
          
s_num_patients()s_num_patients_content()summarize_num_patients() - Number of patients
 
- 
          
          
or_glm()or_clogit()s_odds_ratio()a_odds_ratio()estimate_odds_ratio() - Odds Ratio Estimation
 
- 
          
          
prop_wilson()prop_clopper_pearson()prop_wald()prop_agresti_coull()prop_jeffreys()s_proportion()estimate_proportion()a_proportion() - Estimation of Proportions
 
- 
          
          
d_proportion_diff()prop_diff_wald()prop_diff_ha()prop_diff_nc()prop_diff_cmh()s_proportion_diff()a_proportion_diff()estimate_proportion_diff() - Proportion Difference
 
- 
          
          
s_summary()a_summary()create_afun_summary()summarize_vars() - Summarize Variables
 
Formatted Analysis functions
These have the same arguments as the corresponding statistics functions, and can be further customized by calling rtables::make_afun() on them. They are used as afun in rtables::analyze().
- 
          
          
h_count_cumulative()s_count_cumulative()a_count_cumulative()count_cumulative() - Cumulative Counts with Thresholds
 
- 
          
          
s_count_nonmissing()d_count_missed_doses()s_count_missed_doses()a_count_missed_doses()count_missed_doses() - Counting Missed Doses
 
- 
          
          
s_count_occurrences()a_count_occurrences()count_occurrences() - Occurrence Counts
 
- 
          
          
h_append_grade_groups()s_count_occurrences_by_grade()a_count_occurrences_by_grade()count_occurrences_by_grade()summarize_occurrences_by_grade() - Occurrence Counts by Grade
 
- 
          
          
s_count_patients_with_event()a_count_patients_with_event()count_patients_with_event()s_count_patients_with_flags()a_count_patients_with_flags()count_patients_with_flags() - Count the Number of Patients with a Particular Event
 
- 
          
          
or_glm()or_clogit()s_odds_ratio()a_odds_ratio()estimate_odds_ratio() - Odds Ratio Estimation
 
- 
          
          
prop_wilson()prop_clopper_pearson()prop_wald()prop_agresti_coull()prop_jeffreys()s_proportion()estimate_proportion()a_proportion() - Estimation of Proportions
 
- 
          
          
s_compare()a_compare()create_afun_compare()compare_vars() - Compare Variables Between Groups
 
- 
          
          
s_summary()a_summary()create_afun_summary()summarize_vars() - Summarize Variables
 
Analyze Functions
Analyze Functions are used in combination with the rtables layout functions, in the pipeline which creates the table.
- 
          
          
s_compare()a_compare()create_afun_compare()compare_vars() - Compare Variables Between Groups
 
- 
          
          
s_count_abnormal()a_count_abnormal()count_abnormal() - Patient Counts with Abnormal Range Values
 
- 
          
          
d_count_abnormal_by_baseline()s_count_abnormal_by_baseline()a_count_abnormal_by_baseline()count_abnormal_by_baseline() - Patient Counts with Abnormal Range Values by Baseline Status
 
- 
          
          
s_count_abnormal_by_marked()a_count_abnormal_by_marked()count_abnormal_by_marked() - Count patients with marked laboratory abnormalities
 
- 
          
          
s_count_abnormal_by_worst_grade()a_count_abnormal_by_worst_grade()count_abnormal_by_worst_grade() - Patient Counts with the Most Extreme Post-baseline Toxicity Grade per Direction of Abnormality
 
- 
          
          
h_adlb_worsen()h_worsen_counter()s_count_abnormal_lab_worsen_by_baseline()a_count_abnormal_lab_worsen_by_baseline()count_abnormal_lab_worsen_by_baseline() - Patient Counts for Laboratory Events (Worsen From Baseline) by Highest Grade Post-Baseline
 
- 
          
          
h_count_cumulative()s_count_cumulative()a_count_cumulative()count_cumulative() - Cumulative Counts with Thresholds
 
- 
          
          
s_count_nonmissing()d_count_missed_doses()s_count_missed_doses()a_count_missed_doses()count_missed_doses() - Counting Missed Doses
 
- 
          
          
s_count_occurrences()a_count_occurrences()count_occurrences() - Occurrence Counts
 
- 
          
          
h_append_grade_groups()s_count_occurrences_by_grade()a_count_occurrences_by_grade()count_occurrences_by_grade()summarize_occurrences_by_grade() - Occurrence Counts by Grade
 
- 
          
          
s_count_patients_with_event()a_count_patients_with_event()count_patients_with_event()s_count_patients_with_flags()a_count_patients_with_flags()count_patients_with_flags() - Count the Number of Patients with a Particular Event
 
- 
          
          
s_count_values()count_values()a_count_values() - Counting Specific Values
 
- 
          
          
s_incidence_rate()a_incidence_rate()estimate_incidence_rate()h_incidence_rate_normal()h_incidence_rate_normal_log()h_incidence_rate_exact()h_incidence_rate_byar()h_incidence_rate() - Incidence rate
 
- 
          
          
d_onco_rsp_label()s_length_proportion()a_length_proportion()estimate_multinomial_response() - Estimation of Proportions per Level of Factor
 
- 
          
          
or_glm()or_clogit()s_odds_ratio()a_odds_ratio()estimate_odds_ratio() - Odds Ratio Estimation
 
- 
          
          
prop_wilson()prop_clopper_pearson()prop_wald()prop_agresti_coull()prop_jeffreys()s_proportion()estimate_proportion()a_proportion() - Estimation of Proportions
 
- 
          
          
d_proportion_diff()prop_diff_wald()prop_diff_ha()prop_diff_nc()prop_diff_cmh()s_proportion_diff()a_proportion_diff()estimate_proportion_diff() - Proportion Difference
 
- 
          
          
extract_rsp_biomarkers()tabulate_rsp_biomarkers() - Tabulate Biomarker Effects on Binary Response by Subgroup
 
- 
          
          
h_ancova()s_ancova()a_ancova()summarize_ancova() - Summary for analysis of covariance (ANCOVA).
 
- 
          
          
s_change_from_baseline()a_change_from_baseline()summarize_change() - Summarize the Change from Baseline or Absolute Baseline Values
 
- 
          
          
summarize_colvars() - Summarize Variables in Columns
 
- 
          
          
h_coxreg_univar_formulas()h_coxreg_multivar_formula()fit_coxreg_univar()tidy(<summary.coxph>)h_coxreg_univar_extract()tidy(<coxreg.univar>)fit_coxreg_multivar()h_coxreg_multivar_extract()tidy(<coxreg.multivar>)s_coxreg()summarize_coxreg() - Cox Proportional Hazards Regression
 
- 
          
          
fit_logistic()h_get_interaction_vars()h_interaction_coef_name()h_or_cat_interaction()h_or_cont_interaction()h_or_interaction()h_simple_term_labels()h_interaction_term_labels()h_glm_simple_term_extract()h_glm_interaction_extract()h_glm_inter_term_extract()h_logistic_simple_terms()h_logistic_inter_terms()tidy(<glm>)logistic_regression_cols()logistic_summary_by_flag()summarize_logistic() - Multi-variable logistic regression table
 
- 
          
          
s_num_patients()s_num_patients_content()summarize_num_patients() - Number of patients
 
- 
          
          
s_count_patients_and_multiple_events()summarize_patients_events_in_cols() - Counting Patients and Events in Columns
 
- 
          
          
s_count_patients_sum_exposure()summarize_patients_exposure_in_cols() - Counting Patients Summing Exposure Across All Patients in Columns
 
- 
          
          
summary_in_cols()summarize_vars_in_cols() - Summary numeric variables in columns
 
- 
          
          
s_summary()a_summary()create_afun_summary()summarize_vars() - Summarize Variables
 
- 
          
          
extract_rsp_subgroups()a_response_subgroups()tabulate_rsp_subgroups() - Tabulate Binary Response by Subgroup
 
- 
          
          
extract_survival_biomarkers()tabulate_survival_biomarkers() - Tabulate Biomarker Effects on Survival by Subgroup
 
- 
          
          
extract_survival_subgroups()a_survival_subgroups()tabulate_survival_subgroups() - Tabulate Survival Duration by Subgroup
 
- 
          
          
prop_chisq()prop_schouten()prop_fisher()prop_cmh()s_test_proportion_diff()a_test_proportion_diff()test_proportion_diff() - Difference Test for Two Proportions
 
- 
          
          
`add_footnotes<-`()`add_footnotes<-`() - Add Footnotes
 
- 
          
          
footnotes()footnotes() - Retrieve Footnotes
 
- 
          
          
`footnotes<-`()`footnotes<-`() - Assign Footnotes
 
- 
          
          
h_adlb_worsen()h_worsen_counter()s_count_abnormal_lab_worsen_by_baseline()a_count_abnormal_lab_worsen_by_baseline()count_abnormal_lab_worsen_by_baseline() - Patient Counts for Laboratory Events (Worsen From Baseline) by Highest Grade Post-Baseline
 
- 
          
          
h_adsl_adlb_merge_using_worst_flag() - Helper Function for Deriving Analysis Datasets for LBT13 and LBT14
 
- 
          
          
h_ancova()s_ancova()a_ancova()summarize_ancova() - Summary for analysis of covariance (ANCOVA).
 
- 
          
          
h_append_grade_groups()s_count_occurrences_by_grade()a_count_occurrences_by_grade()count_occurrences_by_grade()summarize_occurrences_by_grade() - Occurrence Counts by Grade
 
- 
          
          
h_col_indices() - Obtain Column Indices
 
- 
          
          
h_count_cumulative()s_count_cumulative()a_count_cumulative()count_cumulative() - Cumulative Counts with Thresholds
 
- 
          
          
h_survtime_df()h_survtime_subgroups_df()h_coxph_df()h_coxph_subgroups_df() - Helper Functions for Tabulating Survival Duration by Subgroup
 
- 
          
          
h_coxreg_inter_effect()h_coxreg_extract_interaction()h_coxreg_inter_estimations() - Cox Regression Helper: Interactions
 
- 
          
          
h_surv_to_coxreg_variables()h_coxreg_mult_cont_df()h_tab_surv_one_biomarker() - Helper Functions for Tabulating Biomarker Effects on Survival by Subgroup
 
- 
          
          
h_coxreg_univar_formulas()h_coxreg_multivar_formula()fit_coxreg_univar()tidy(<summary.coxph>)h_coxreg_univar_extract()tidy(<coxreg.univar>)fit_coxreg_multivar()h_coxreg_multivar_extract()tidy(<coxreg.multivar>)s_coxreg()summarize_coxreg() - Cox Proportional Hazards Regression
 
- 
          
          
h_decompose_gg() - 
ggplotDecomposition 
- 
          
          
h_get_format_threshold()h_format_threshold()format_extreme_values()format_extreme_values_ci() - Formatting Extreme Values
 
- 
          
          
h_format_row() - Helper function to get the right formatting in the optional table in g_lineplot.
 
- 
          
          
fit_logistic()h_get_interaction_vars()h_interaction_coef_name()h_or_cat_interaction()h_or_cont_interaction()h_or_interaction()h_simple_term_labels()h_interaction_term_labels()h_glm_simple_term_extract()h_glm_interaction_extract()h_glm_inter_term_extract()h_logistic_simple_terms()h_logistic_inter_terms()tidy(<glm>)logistic_regression_cols()logistic_summary_by_flag()summarize_logistic() - Multi-variable logistic regression table
 
- 
          
          
h_ggkm() - Helper function: KM plot
 
- 
          
          
s_incidence_rate()a_incidence_rate()estimate_incidence_rate()h_incidence_rate_normal()h_incidence_rate_normal_log()h_incidence_rate_exact()h_incidence_rate_byar()h_incidence_rate() - Incidence rate
 
- 
          
          
h_km_layout() - Helper: KM Layout
 
- 
          
          
h_rsp_to_logistic_variables()h_logistic_mult_cont_df()h_tab_rsp_one_biomarker() - Helper Functions for Tabulating Biomarker Effects on Binary Response by Subgroup
 
- 
          
          
h_map_for_count_abnormal() - Helper Function to create a map dataframe that can be used in 
trim_levels_to_mapsplit function. 
- 
          
          
h_proportion_df()h_proportion_subgroups_df()h_odds_ratio_df()h_odds_ratio_subgroups_df() - Helper Functions for Tabulating Binary Response by Subgroup
 
- 
          
          
h_pkparam_sort() - Sort 
PK PARAMvariable 
- 
          
          
h_recycle()desctools_binom()desctools_binomci() - Confidence Intervals for a Difference of Binomials
 
- 
          
          
h_split_by_subgroups() - Split Dataframe by Subgroups
 
- 
          
          
h_split_param() - Split parameters
 
- 
          
          
h_stack_by_baskets() - Helper Function to create a new 
SMQvariable inADAEby stackingSMQand/orCQrecords. 
- 
          
          
h_step_window()h_step_trt_effect()h_step_survival_formula()h_step_survival_est()h_step_rsp_formula()h_step_rsp_est() - Helper Functions for Subgroup Treatment Effect Pattern (STEP) Calculations
 
- 
          
          
h_tab_one_biomarker() - Helper Function for Tabulation of a Single Biomarker Result
 
- 
          
          
h_tbl_coxph_pairwise() - Helper Function: Pairwise CoxPH table
 
- 
          
          
h_tbl_median_surv() - Helper Function: Survival Estimations
 
- 
          
          
or_glm()or_clogit()s_odds_ratio()a_odds_ratio()estimate_odds_ratio() - Odds Ratio Estimation
 
Model Specific Functions
These functions help with fitting or extracting results from specific models.
- 
          
          
estimate_coef() - Hazard Ratio Estimation in Interactions
 
- 
          
          
extract_rsp_subgroups()a_response_subgroups()tabulate_rsp_subgroups() - Tabulate Binary Response by Subgroup
 
- 
          
          
extract_survival_biomarkers()tabulate_survival_biomarkers() - Tabulate Biomarker Effects on Survival by Subgroup
 
- 
          
          
extract_survival_subgroups()a_survival_subgroups()tabulate_survival_subgroups() - Tabulate Survival Duration by Subgroup
 
- 
          
          
h_coxreg_univar_formulas()h_coxreg_multivar_formula()fit_coxreg_univar()tidy(<summary.coxph>)h_coxreg_univar_extract()tidy(<coxreg.univar>)fit_coxreg_multivar()h_coxreg_multivar_extract()tidy(<coxreg.multivar>)s_coxreg()summarize_coxreg() - Cox Proportional Hazards Regression
 
- 
          
          
fit_logistic()h_get_interaction_vars()h_interaction_coef_name()h_or_cat_interaction()h_or_cont_interaction()h_or_interaction()h_simple_term_labels()h_interaction_term_labels()h_glm_simple_term_extract()h_glm_interaction_extract()h_glm_inter_term_extract()h_logistic_simple_terms()h_logistic_inter_terms()tidy(<glm>)logistic_regression_cols()logistic_summary_by_flag()summarize_logistic() - Multi-variable logistic regression table
 
- 
          
          
fit_rsp_step() - Subgroup Treatment Effect Pattern (STEP) Fit for Binary (Response) Outcome
 
- 
          
          
fit_survival_step() - Subgroup Treatment Effect Pattern (STEP) Fit for Survival Outcome
 
- 
          
          
get_smooths() - Smooth Function with Optional Grouping
 
- 
          
          
pairwise() - Pairwise formula special term
 
- 
          
          
g_step()tidy(<step>) - Create a STEP Graph
 
- 
          
          
univariate() - Univariate formula special term
 
- 
          
          
g_forest() - Create a Forest Plot based on a Table
 
- 
          
          
h_set_nest_theme()h_g_ipp()g_ipp() - Individual Patient Plots
 
- 
          
          
g_km() - Kaplan-Meier Plot
 
- 
          
          
g_lineplot() - Line plot with the optional table
 
- 
          
          
g_step()tidy(<step>) - Create a STEP Graph
 
- 
          
          
g_waterfall() - Horizontal Waterfall Plot
 
rtables Helper Functions
These functions help to work with the new rtables package and might be moved there later.
- 
          
          
add_rowcounts() - Layout Creating Function to Add Row Total Counts
 
- 
          
          
append_varlabels() - Add Variable Labels to Top Left Corner in Table
 
- 
          
          
as.rtable() - Convert to 
rtable 
- 
          
          
combine_groups() - Reference and Treatment Group Combination
 
- 
          
          
combine_vectors() - Combine Two Vectors Element Wise
 
- 
          
          
h_row_counts()h_row_fractions()h_col_counts()is_leaf_table()h_content_first_row() - 
rtablesAccess Helper Functions 
- 
          
          
h_col_indices() - Obtain Column Indices
 
- 
          
          
split_cols_by_groups() - Split Columns by Groups of Levels
 
- 
          
          
to_string_matrix() - Convert Table into Matrix of Strings
 
rtables Formatting Functions
These functions provide customized formatting rules to work with the rtables package.
- 
          
          
format_count_fraction() - Formatting Count and Fraction
 
- 
          
          
h_get_format_threshold()h_format_threshold()format_extreme_values()format_extreme_values_ci() - Formatting Extreme Values
 
- 
          
          
format_fraction() - Formatting Fraction and Percentage
 
- 
          
          
format_fraction_threshold() - Formatting Fraction with Lower Threshold
 
- 
          
          
format_xx() - Formatting: XX as Formatting Function
 
- 
          
          
score_occurrences()score_occurrences_cols()score_occurrences_subtable()score_occurrences_cont_cols() - Occurrence Table Sorting
 
- 
          
          
arrange_grobs() - Arrange Multiple Grobs
 
- 
          
          
decorate_grob() - Add Titles, Footnotes, Page Number, and a Bounding Box to a Grid Grob
 
- 
          
          
decorate_grob_factory() - Update Page Number
 
- 
          
          
decorate_grob_set() - Decorate Set of 
grobsand Add Page Numbering 
- 
          
          
draw_grob() - Draw 
grob 
- 
          
          
h_set_nest_theme()h_g_ipp()g_ipp() - Individual Patient Plots
 
- 
          
          
h_grob_coxph() - Helper Function: CoxPH Grob
 
- 
          
          
h_grob_median_surv() - Helper Function: Survival Estimation Grob
 
- 
          
          
h_grob_tbl_at_risk() - Helper: Patient-at-Risk Grobs
 
- 
          
          
h_grob_y_annot() - Helper: Grid Object with y-axis Annotation
 
- 
          
          
h_xticks() - Helper function: x tick positions
 
- 
          
          
stack_grobs() - Stack Multiple Grobs
 
- 
          
          
stat_mean_ci() - Confidence Interval for Mean
 
- 
          
          
stat_mean_pval() - p-Value of the Mean
 
- 
          
          
stat_median_ci() - Confidence Interval for Median
 
- 
          
          
aesi_label() - Labels for Adverse Event Baskets
 
- 
          
          
as_factor_keep_attributes() - Conversion of a Vector to a Factor
 
- 
          
          
bins_percent_labels() - Labels for Bins in Percent
 
- 
          
          
combine_levels() - Combine Factor Levels
 
- 
          
          
cut_quantile_bins() - Cutting Numeric Vector into Empirical Quantile Bins
 
- 
          
          
day2month() - Conversion of Days to Months
 
- 
          
          
month2day() - Conversion of Months to Days
 
- 
          
          
df_explicit_na() - Encode Categorical Missing Values in a Data Frame
 
- 
          
          
d_onco_rsp_label()s_length_proportion()a_length_proportion()estimate_multinomial_response() - Estimation of Proportions per Level of Factor
 
- 
          
          
d_count_abnormal_by_baseline()s_count_abnormal_by_baseline()a_count_abnormal_by_baseline()count_abnormal_by_baseline() - Patient Counts with Abnormal Range Values by Baseline Status
 
- 
          
          
s_count_nonmissing()d_count_missed_doses()s_count_missed_doses()a_count_missed_doses()count_missed_doses() - Counting Missed Doses
 
- 
          
          
d_count_cumulative() - Description of Cumulative Count
 
- 
          
          
d_pkparam() - Generate PK reference dataset
 
- 
          
          
d_proportion() - Description of the Proportion Summary
 
- 
          
          
d_proportion_diff()prop_diff_wald()prop_diff_ha()prop_diff_nc()prop_diff_cmh()s_proportion_diff()a_proportion_diff()estimate_proportion_diff() - Proportion Difference
 
- 
          
          
d_rsp_subgroups_colvars() - Labels for Column Variables in Binary Response by Subgroup Table
 
- 
          
          
d_survival_subgroups_colvars() - Labels for Column Variables in Survival Duration by Subgroup Table
 
- 
          
          
d_test_proportion_diff() - Description of the Difference Test Between Two Proportions
 
- 
          
          
explicit_na() - Missing Data
 
- 
          
          
fct_collapse_only() - Collapsing of Factor Levels and Keeping Only Those New Group Levels
 
- 
          
          
fct_discard() - Discard Certain Levels from a Factor
 
- 
          
          
fct_explicit_na_if() - Insertion of Explicit Missings in a Factor
 
- 
          
          
f_conf_level() - Utility function to create label for confidence interval
 
- 
          
          
f_pval() - Utility function to create label for p-value
 
- 
          
          
h_data_plot() - Helper function: tidy survival fit
 
- 
          
          
sas_na() - Convert Strings to 
NA 
- 
          
          
to_n() - Replicate Entries of a Vector if Required
 
- 
          
          
assert_list_of_variables()assert_df_with_variables()assert_valid_factor()assert_df_with_factors()assert_proportion_value() - Additional Assertions for 
checkmate 
- 
          
          
color_palette() - Deprecated by 
nestcolor::color_palette: Color Palettes Used in NEST 
- 
          
          
h_set_nest_theme()h_g_ipp()g_ipp() - Individual Patient Plots
 
- 
          
          
s_cox_univariate() - Cox regression including a single covariate - summarized results