Convenient function for calculating the mean confidence interval.
It calculates the arithmetic as well as the geometric mean.
It can be used as a ggplot helper function for plotting.
Usage
stat_mean_ci(
  x,
  conf_level = 0.95,
  na.rm = TRUE,
  n_min = 2,
  gg_helper = TRUE,
  geom_mean = FALSE
)Arguments
- x
 (
numeric)
vector of numbers we want to analyze.- conf_level
 (
proportion)
confidence level of the interval.- na.rm
 (
flag)
whetherNAvalues should be removed fromxprior to analysis.- n_min
 (
number)
a minimum number of non-missingxto estimate the confidence interval for mean.- gg_helper
 (
logical)TRUEwhen output should be aligned for the use withggplot.- geom_mean
 (
logical)TRUEwhen the geometric mean should be calculated
Examples
stat_mean_ci(sample(10), gg_helper = FALSE)
#> mean_ci_lwr mean_ci_upr 
#>    3.334149    7.665851 
p <- ggplot2::ggplot(mtcars, ggplot2::aes(cyl, mpg)) +
  ggplot2::geom_point()
p + ggplot2::stat_summary(
  fun.data = stat_mean_ci,
  geom = "errorbar"
)
p + ggplot2::stat_summary(
  fun.data = stat_mean_ci,
  fun.args = list(conf_level = 0.5),
  geom = "errorbar"
)
p + ggplot2::stat_summary(
  fun.data = stat_mean_ci,
  fun.args = list(conf_level = 0.5, geom_mean = TRUE),
  geom = "errorbar"
)