Skip to contents

[Stable]

Estimate the proportion of responders within a studied population.

Usage

prop_wilson(rsp, conf_level, correct = FALSE)

prop_clopper_pearson(rsp, conf_level)

prop_wald(rsp, conf_level, correct = FALSE)

prop_agresti_coull(rsp, conf_level)

prop_jeffreys(rsp, conf_level)

s_proportion(
  x,
  conf_level = 0.95,
  method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsonc", "agresti-coull",
    "jeffreys"),
  long = FALSE
)

estimate_proportion(
  lyt,
  vars,
  ...,
  show_labels = "hidden",
  table_names = vars,
  .stats = NULL,
  .formats = NULL,
  .labels = NULL,
  .indent_mods = NULL
)

a_proportion(
  x,
  conf_level = 0.95,
  method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsonc", "agresti-coull",
    "jeffreys"),
  long = FALSE
)

Arguments

rsp

(logical)
whether each subject is a responder or not.

conf_level

(proportion)
confidence level of the interval.

correct

(flag)
apply continuity correction.

x

(logical)
whether each subject is a responder or not. TRUE represents a successful outcome.

method

(string)
the method used to construct the confidence interval for proportion of successful outcomes; one of waldcc, wald, clopper-pearson, wilson, agresti-coull or jeffreys.

long

(flag)
a long description is required.

lyt

(layout)
input layout where analyses will be added to.

vars

(character)
variable names for the primary analysis variable to be iterated over.

...

other arguments are ultimately conveyed to s_proportion().

show_labels

label visibility: one of "default", "visible" and "hidden".

table_names

(character)
this can be customized in case that the same vars are analyzed multiple times, to avoid warnings from rtables.

.stats

(character)
statistics to select for the table.

.formats

(named character or list)
formats for the statistics.

.labels

(named character)
labels for the statistics (without indent).

.indent_mods

(named integer)
indent modifiers for the labels.

Functions

  • prop_wilson(): the Wilson interval calls stats::prop.test(). Also referred to as Wilson score interval.

  • prop_clopper_pearson(): the Clopper-Pearson interval calls stats::binom.test(). Also referred to as the exact method.

  • prop_wald(): the Wald interval follows the usual textbook definition for a single proportion confidence interval using the normal approximation.

  • prop_agresti_coull(): the Agresti-Coull interval was created by Alan Agresti and Brent Coull and can be understood (for 95% CI) as adding two successes and two failures to the data, and then using the Wald formula to construct a CI.

  • prop_jeffreys(): the Jeffreys interval is an equal-tailed interval based on the non-informative Jeffreys prior for a binomial proportion.

  • s_proportion(): statistics function estimating a proportion along with its confidence interval.

  • estimate_proportion(): used in a rtables pipeline.

  • a_proportion(): Formatted Analysis function which can be further customized by calling rtables::make_afun() on it. It is used as afun in rtables::analyze().

Examples

rsp <- c(
  TRUE, TRUE, TRUE, TRUE, TRUE,
  FALSE, FALSE, FALSE, FALSE, FALSE
)
prop_wilson(rsp, conf_level = 0.9)
#> [1] 0.2692718 0.7307282

prop_clopper_pearson(rsp, conf_level = .95)
#> [1] 0.187086 0.812914

prop_wald(rsp, conf_level = 0.95)
#> [1] 0.1901025 0.8098975
prop_wald(rsp, conf_level = 0.95, correct = TRUE)
#> [1] 0.1401025 0.8598975

prop_agresti_coull(rsp, conf_level = 0.95)
#> [1] 0.2365931 0.7634069

prop_jeffreys(rsp, conf_level = 0.95)
#> [1] 0.2235287 0.7764713
s_proportion(c(1, 0, 1, 0))
#> $n_prop
#> [1] 2.0 0.5
#> attr(,"label")
#> [1] "Responders"
#> 
#> $prop_ci
#> [1]   0 100
#> attr(,"label")
#> [1] "95% CI (Wald, with correction)"
#> 
dta_test <- data.frame(
  USUBJID = paste0("S", 1:12),
  ARM     = rep(LETTERS[1:3], each = 4),
  AVAL    = c(A = c(1, 1, 1, 1), B = c(0, 0, 1, 1), C = c(0, 0, 0, 0))
)

basic_table() %>%
  split_cols_by("ARM") %>%
  estimate_proportion(vars = "AVAL") %>%
  build_table(df = dta_test)
#>                                        A              B              C     
#> ———————————————————————————————————————————————————————————————————————————
#> Responders                        4 (100.0%)      2 (50.0%)      0 (0.0%)  
#> 95% CI (Wald, with correction)   (87.5, 100.0)   (0.0, 100.0)   (0.0, 12.5)
a_proportion(c(1, 0, 1, 0))
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#>   row_name formatted_cell indent_mod                      row_label
#> 1   n_prop      2 (50.0%)          0                     Responders
#> 2  prop_ci   (0.0, 100.0)          0 95% CI (Wald, with correction)