Helper Functions for Tabulating Survival Duration by Subgroup
Source:R/h_survival_duration_subgroups.R
h_survival_duration_subgroups.Rd
Helper functions that tabulate in a data frame statistics such as median survival time and hazard ratio for population subgroups.
Usage
h_survtime_df(tte, is_event, arm)
h_survtime_subgroups_df(
variables,
data,
groups_lists = list(),
label_all = "All Patients"
)
h_coxph_df(tte, is_event, arm, strata_data = NULL, control = control_coxph())
h_coxph_subgroups_df(
variables,
data,
groups_lists = list(),
control = control_coxph(),
label_all = "All Patients"
)
Arguments
- tte
(
numeric
)
contains time-to-event duration values.- is_event
(
logical
)TRUE
if event,FALSE
if time to event is censored.- arm
(
factor
)
the treatment group variable.- variables
(named
list
ofstring
)
list of additional analysis variables.- data
(
data.frame
)
the dataset containing the variables to summarize.- groups_lists
(named
list
oflist
)
optionally contains for eachsubgroups
variable a list, which specifies the new group levels via the names and the levels that belong to it in the character vectors that are elements of the list.- label_all
(
string
)
label for the total population analysis.- strata_data
(
factor
,data.frame
orNULL
)
required if stratified analysis is performed.- control
-
(
list
)
parameters for comparison details, specified by using
the helper functioncontrol_coxph()
. Some possible parameter options are:pval_method
: (string
)
p-value method for testing hazard ratio = 1. Default method is "log-rank" which comes fromsurvival::survdiff()
, can also be set to "wald" or "likelihood" that comes fromsurvival::coxph()
.ties
: (string
)
specifying the method for tie handling. Default is "efron", can also be set to "breslow" or "exact". See more insurvival::coxph()
conf_level
: (proportion
)
confidence level of the interval for HR.
Functions
h_survtime_df()
: helper to prepare a data frame of median survival times by arm.h_survtime_subgroups_df()
: summarizes median survival times by arm and across subgroups in a data frame.variables
corresponds to the names of variables found indata
, passed as a named list and requires elementstte
,is_event
,arm
and optionallysubgroups
.groups_lists
optionally specifies groupings forsubgroups
variables.h_coxph_df()
: helper to prepare a data frame with estimates of treatment hazard ratio.h_coxph_subgroups_df()
: summarizes estimates of the treatment hazard ratio across subgroups in a data frame.variables
corresponds to the names of variables found indata
, passed as a named list and requires elementstte
,is_event
,arm
and optionallysubgroups
andstrat
.groups_lists
optionally specifies groupings forsubgroups
variables.
Examples
# Testing dataset.
library(scda)
library(dplyr)
library(forcats)
library(rtables)
adtte <- synthetic_cdisc_data("latest")$adtte
# Save variable labels before data processing steps.
adtte_labels <- formatters::var_labels(adtte)
adtte_f <- adtte %>%
filter(
PARAMCD == "OS",
ARM %in% c("B: Placebo", "A: Drug X"),
SEX %in% c("M", "F")
) %>%
mutate(
# Reorder levels of ARM to display reference arm before treatment arm.
ARM = droplevels(fct_relevel(ARM, "B: Placebo")),
SEX = droplevels(SEX),
is_event = CNSR == 0
)
labels <- c("ARM" = adtte_labels[["ARM"]], "SEX" = adtte_labels[["SEX"]], "is_event" = "Event Flag")
formatters::var_labels(adtte_f)[names(labels)] <- labels
# Extract median survival time for one group.
h_survtime_df(
tte = adtte_f$AVAL,
is_event = adtte_f$is_event,
arm = adtte_f$ARM
)
#> arm n n_events median
#> 1 B: Placebo 134 87 837.428
#> 2 A: Drug X 134 79 1260.491
# Extract median survival time for multiple groups.
h_survtime_subgroups_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM",
subgroups = c("SEX", "BMRKR2")
),
data = adtte_f
)
#> arm n n_events median subgroup var
#> 1 B: Placebo 134 87 837.4280 All Patients ALL
#> 2 A: Drug X 134 79 1260.4905 All Patients ALL
#> 3 B: Placebo 82 50 850.9208 F SEX
#> 4 A: Drug X 79 45 1274.8047 F SEX
#> 5 B: Placebo 52 37 527.6659 M SEX
#> 6 A: Drug X 55 34 849.2976 M SEX
#> 7 B: Placebo 45 30 751.4314 LOW BMRKR2
#> 8 A: Drug X 50 31 1160.6458 LOW BMRKR2
#> 9 B: Placebo 56 36 722.7926 MEDIUM BMRKR2
#> 10 A: Drug X 37 19 1269.4039 MEDIUM BMRKR2
#> 11 B: Placebo 33 21 848.2393 HIGH BMRKR2
#> 12 A: Drug X 47 29 1070.8022 HIGH BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Sex analysis
#> 4 Sex analysis
#> 5 Sex analysis
#> 6 Sex analysis
#> 7 Categorical Level Biomarker 2 analysis
#> 8 Categorical Level Biomarker 2 analysis
#> 9 Categorical Level Biomarker 2 analysis
#> 10 Categorical Level Biomarker 2 analysis
#> 11 Categorical Level Biomarker 2 analysis
#> 12 Categorical Level Biomarker 2 analysis
# Define groupings for BMRKR2 levels.
h_survtime_subgroups_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM",
subgroups = c("SEX", "BMRKR2")
),
data = adtte_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
#> arm n n_events median subgroup var
#> 1 B: Placebo 134 87 837.4280 All Patients ALL
#> 2 A: Drug X 134 79 1260.4905 All Patients ALL
#> 3 B: Placebo 82 50 850.9208 F SEX
#> 4 A: Drug X 79 45 1274.8047 F SEX
#> 5 B: Placebo 52 37 527.6659 M SEX
#> 6 A: Drug X 55 34 849.2976 M SEX
#> 7 B: Placebo 45 30 751.4314 low BMRKR2
#> 8 A: Drug X 50 31 1160.6458 low BMRKR2
#> 9 B: Placebo 101 66 741.8707 low/medium BMRKR2
#> 10 A: Drug X 87 50 1269.4039 low/medium BMRKR2
#> 11 B: Placebo 134 87 837.4280 low/medium/high BMRKR2
#> 12 A: Drug X 134 79 1260.4905 low/medium/high BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Sex analysis
#> 4 Sex analysis
#> 5 Sex analysis
#> 6 Sex analysis
#> 7 Categorical Level Biomarker 2 analysis
#> 8 Categorical Level Biomarker 2 analysis
#> 9 Categorical Level Biomarker 2 analysis
#> 10 Categorical Level Biomarker 2 analysis
#> 11 Categorical Level Biomarker 2 analysis
#> 12 Categorical Level Biomarker 2 analysis
# Extract hazard ratio for one group.
h_coxph_df(adtte_f$AVAL, adtte_f$is_event, adtte_f$ARM)
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 268 166 0.7173651 0.5275231 0.9755262 0.95 0.03340293
#> pval_label
#> 1 p-value (log-rank)
# Extract hazard ratio for one group with stratification factor.
h_coxph_df(adtte_f$AVAL, adtte_f$is_event, adtte_f$ARM, strata_data = adtte_f$STRATA1)
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 268 166 0.7343822 0.5376802 1.003045 0.95 0.05142933
#> pval_label
#> 1 p-value (log-rank)
# Extract hazard ratio for multiple groups.
h_coxph_subgroups_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM",
subgroups = c("SEX", "BMRKR2")
),
data = adtte_f
)
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 268 166 0.7173651 0.5275231 0.9755262 0.95 0.03340293
#> 2 161 95 0.6979693 0.4647812 1.0481517 0.95 0.08148174
#> 3 107 71 0.7836167 0.4873444 1.2600023 0.95 0.31318347
#> 4 95 61 0.7050730 0.4243655 1.1714617 0.95 0.17526198
#> 5 93 55 0.5728069 0.3244196 1.0113683 0.95 0.05174942
#> 6 80 50 0.9769002 0.5552002 1.7189005 0.95 0.93538927
#> pval_label subgroup var var_label row_type
#> 1 p-value (log-rank) All Patients ALL All Patients content
#> 2 p-value (log-rank) F SEX Sex analysis
#> 3 p-value (log-rank) M SEX Sex analysis
#> 4 p-value (log-rank) LOW BMRKR2 Categorical Level Biomarker 2 analysis
#> 5 p-value (log-rank) MEDIUM BMRKR2 Categorical Level Biomarker 2 analysis
#> 6 p-value (log-rank) HIGH BMRKR2 Categorical Level Biomarker 2 analysis
# Define groupings of BMRKR2 levels.
h_coxph_subgroups_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM",
subgroups = c("SEX", "BMRKR2")
),
data = adtte_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 268 166 0.7173651 0.5275231 0.9755262 0.95 0.03340293
#> 2 161 95 0.6979693 0.4647812 1.0481517 0.95 0.08148174
#> 3 107 71 0.7836167 0.4873444 1.2600023 0.95 0.31318347
#> 4 95 61 0.7050730 0.4243655 1.1714617 0.95 0.17526198
#> 5 188 116 0.6453648 0.4447544 0.9364622 0.95 0.02019120
#> 6 268 166 0.7173651 0.5275231 0.9755262 0.95 0.03340293
#> pval_label subgroup var var_label
#> 1 p-value (log-rank) All Patients ALL All Patients
#> 2 p-value (log-rank) F SEX Sex
#> 3 p-value (log-rank) M SEX Sex
#> 4 p-value (log-rank) low BMRKR2 Categorical Level Biomarker 2
#> 5 p-value (log-rank) low/medium BMRKR2 Categorical Level Biomarker 2
#> 6 p-value (log-rank) low/medium/high BMRKR2 Categorical Level Biomarker 2
#> row_type
#> 1 content
#> 2 analysis
#> 3 analysis
#> 4 analysis
#> 5 analysis
#> 6 analysis
# Extract hazard ratio for multiple groups with stratification factors.
h_coxph_subgroups_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM",
subgroups = c("SEX", "BMRKR2"),
strat = c("STRATA1", "STRATA2")
),
data = adtte_f
)
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 268 166 0.7412854 0.5390265 1.019438 0.95 0.06468801
#> 2 161 95 0.7328179 0.4794740 1.120023 0.95 0.14954837
#> 3 107 71 0.7277226 0.4270452 1.240103 0.95 0.24075763
#> 4 95 61 0.6717712 0.3834088 1.177011 0.95 0.16224377
#> 5 93 55 0.6161793 0.3394411 1.118535 0.95 0.10874603
#> 6 80 50 1.2479396 0.6657425 2.339273 0.95 0.48884004
#> pval_label subgroup var var_label row_type
#> 1 p-value (log-rank) All Patients ALL All Patients content
#> 2 p-value (log-rank) F SEX Sex analysis
#> 3 p-value (log-rank) M SEX Sex analysis
#> 4 p-value (log-rank) LOW BMRKR2 Categorical Level Biomarker 2 analysis
#> 5 p-value (log-rank) MEDIUM BMRKR2 Categorical Level Biomarker 2 analysis
#> 6 p-value (log-rank) HIGH BMRKR2 Categorical Level Biomarker 2 analysis