Skip to contents

[Stable]

These are specific functions to count patients with missed doses. The difference to count_cumulative() is mainly the special labels.

Usage

count_missed_doses(
  lyt,
  vars,
  thresholds,
  var_labels = vars,
  show_labels = "visible",
  na_str = default_na_str(),
  nested = TRUE,
  ...,
  table_names = vars,
  .stats = NULL,
  .formats = NULL,
  .labels = NULL,
  .indent_mods = NULL
)

s_count_nonmissing(x)

s_count_missed_doses(x, thresholds, .N_col)

a_count_missed_doses(x, thresholds, .N_col)

Arguments

lyt

(PreDataTableLayouts)
layout that analyses will be added to.

vars

(character)
variable names for the primary analysis variable to be iterated over.

thresholds

(numeric)
minimum number of missed doses the patients had.

var_labels

(character)
variable labels.

show_labels

(string)
label visibility: one of "default", "visible" and "hidden".

na_str

(string)
string used to replace all NA or empty values in the output.

nested

(flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.

...

additional arguments for the lower level functions.

table_names

(character)
this can be customized in the case that the same vars are analyzed multiple times, to avoid warnings from rtables.

.stats

(character)
statistics to select for the table. Run get_stats("count_missed_doses") to see available statistics for this function.

.formats

(named character or list)
formats for the statistics. See Details in analyze_vars for more information on the "auto" setting.

.labels

(named character)
labels for the statistics (without indent).

.indent_mods

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.

x

(numeric)
vector of numbers we want to analyze.

.N_col

(integer(1))
column-wise N (column count) for the full column being analyzed that is typically passed by rtables.

Value

  • count_missed_doses() returns a layout object suitable for passing to further layouting functions, or to rtables::build_table(). Adding this function to an rtable layout will add formatted rows containing the statistics from s_count_missed_doses() to the table layout.

  • s_count_nonmissing() returns the statistic n which is the count of non-missing values in x.

  • s_count_missed_doses() returns the statistics n and count_fraction with one element for each threshold.

Functions

  • count_missed_doses(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper for rtables::analyze().

  • s_count_nonmissing(): Statistics function to count non-missing values.

  • s_count_missed_doses(): Statistics function to count patients with missed doses.

  • a_count_missed_doses(): Formatted analysis function which is used as afun in count_missed_doses().

See also

Relevant description function d_count_missed_doses().

Examples

library(dplyr)

anl <- tern_ex_adsl %>%
  distinct(STUDYID, USUBJID, ARM) %>%
  mutate(
    PARAMCD = "TNDOSMIS",
    PARAM = "Total number of missed doses during study",
    AVAL = sample(0:20, size = nrow(tern_ex_adsl), replace = TRUE),
    AVALC = ""
  )

basic_table() %>%
  split_cols_by("ARM") %>%
  add_colcounts() %>%
  count_missed_doses("AVAL", thresholds = c(1, 5, 10, 15), var_labels = "Missed Doses") %>%
  build_table(anl, alt_counts_df = tern_ex_adsl)
#>                              A: Drug X    B: Placebo   C: Combination
#>                                (N=69)       (N=73)         (N=58)    
#> —————————————————————————————————————————————————————————————————————
#> Missed Doses                                                         
#>   n                              69           73             58      
#>   At least 1 missed dose     69 (100%)    69 (94.5%)     55 (94.8%)  
#>   At least 5 missed doses    57 (82.6%)   55 (75.3%)     50 (86.2%)  
#>   At least 10 missed doses    40 (58%)    40 (54.8%)     32 (55.2%)  
#>   At least 15 missed doses   26 (37.7%)   25 (34.2%)     13 (22.4%)