The analyze function surv_timepoint()
creates a layout element to analyze patient survival rates and difference
of survival rates between groups at a given time point. The primary analysis variable vars
is the time variable.
Other required inputs are time_point
, the numeric time point of interest, and is_event
, a variable that
indicates whether or not an event has occurred. The method
argument is used to specify whether you want to analyze
survival estimations ("surv"
), difference in survival with the control ("surv_diff"
), or both of these
("both"
).
Usage
surv_timepoint(
lyt,
vars,
time_point,
is_event,
control = control_surv_timepoint(),
method = c("surv", "surv_diff", "both"),
na_str = default_na_str(),
nested = TRUE,
...,
table_names_suffix = "",
var_labels = "Time",
show_labels = "visible",
.stats = c("pt_at_risk", "event_free_rate", "rate_ci", "rate_diff", "rate_diff_ci",
"ztest_pval"),
.formats = NULL,
.labels = NULL,
.indent_mods = if (method == "both") {
c(rate_diff = 1L, rate_diff_ci = 2L,
ztest_pval = 2L)
} else {
c(rate_diff_ci = 1L, ztest_pval = 1L)
}
)
s_surv_timepoint(
df,
.var,
time_point,
is_event,
control = control_surv_timepoint()
)
a_surv_timepoint(
df,
.var,
time_point,
is_event,
control = control_surv_timepoint()
)
s_surv_timepoint_diff(
df,
.var,
.ref_group,
.in_ref_col,
time_point,
control = control_surv_timepoint(),
...
)
a_surv_timepoint_diff(
df,
.var,
.ref_group,
.in_ref_col,
time_point,
control = control_surv_timepoint(),
...
)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- time_point
(
numeric(1)
)
survival time point of interest.- is_event
(
flag
)TRUE
if event,FALSE
if time to event is censored.- control
-
(
list
)
parameters for comparison details, specified by using the helper functioncontrol_surv_timepoint()
. Some possible parameter options are:conf_level
(proportion
)
confidence level of the interval for survival rate.conf_type
(string
)
confidence interval type. Options are "plain" (default), "log", "log-log", see more insurvival::survfit()
. Note option "none" is no longer supported.
- method
(
string
)"surv"
(survival estimations),"surv_diff"
(difference in survival with the control), or"both"
.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
additional arguments for the lower level functions.
- table_names_suffix
(
string
)
optional suffix for thetable_names
used for thertables
to avoid warnings from duplicate table names.- var_labels
(
character
)
variable labels.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- .stats
(
character
)
statistics to select for the table. Runget_stats("surv_timepoint")
to see available statistics for this function.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels. Each element of the vector should be a name-value pair with name corresponding to a statistic specified in.stats
and value the indentation for that statistic's row label.- df
(
data.frame
)
data set containing all analysis variables.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- .ref_group
(
data.frame
orvector
)
the data corresponding to the reference group.- .in_ref_col
(
flag
)TRUE
when working with the reference level,FALSE
otherwise.
Value
surv_timepoint()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_surv_timepoint()
and/ors_surv_timepoint_diff()
to the table layout depending on the value ofmethod
.
-
s_surv_timepoint()
returns the statistics:pt_at_risk
: Patients remaining at risk.event_free_rate
: Event-free rate (%).rate_se
: Standard error of event free rate.rate_ci
: Confidence interval for event free rate.
a_surv_timepoint()
returns the corresponding list with formattedrtables::CellValue()
.
-
s_surv_timepoint_diff()
returns the statistics:rate_diff
: Event-free rate difference between two groups.rate_diff_ci
: Confidence interval for the difference.ztest_pval
: p-value to test the difference is 0.
a_surv_timepoint_diff()
returns the corresponding list with formattedrtables::CellValue()
.
Functions
surv_timepoint()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.s_surv_timepoint()
: Statistics function which analyzes survival rate.a_surv_timepoint()
: Formatted analysis function which is used asafun
insurv_timepoint()
whenmethod = "surv"
.s_surv_timepoint_diff()
: Statistics function which analyzes difference between two survival rates.a_surv_timepoint_diff()
: Formatted analysis function which is used asafun
insurv_timepoint()
whenmethod = "surv_diff"
.
Examples
library(dplyr)
adtte_f <- tern_ex_adtte %>%
filter(PARAMCD == "OS") %>%
mutate(
AVAL = day2month(AVAL),
is_event = CNSR == 0
)
# Survival at given time points.
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
surv_timepoint(
vars = "AVAL",
var_labels = "Months",
is_event = "is_event",
time_point = 7
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ———————————————————————————————————————————————————————————————————————————————
#> 7 Months
#> Patients remaining at risk 54 57 42
#> Event Free Rate (%) 84.89 79.43 75.50
#> 95% CI (76.24, 93.53) (70.15, 88.71) (64.33, 86.67)
# Difference in survival at given time points.
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
surv_timepoint(
vars = "AVAL",
var_labels = "Months",
is_event = "is_event",
time_point = 9,
method = "surv_diff",
.indent_mods = c("rate_diff" = 0L, "rate_diff_ci" = 2L, "ztest_pval" = 2L)
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ——————————————————————————————————————————————————————————————————————————
#> 9 Months
#> Difference in Event Free Rate -9.64 -13.03
#> 95% CI (-22.80, 3.52) (-27.59, 1.53)
#> p-value (Z-test) 0.1511 0.0794
# Survival and difference in survival at given time points.
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
surv_timepoint(
vars = "AVAL",
var_labels = "Months",
is_event = "is_event",
time_point = 9,
method = "both"
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ——————————————————————————————————————————————————————————————————————————————————
#> 9 Months
#> Patients remaining at risk 53 53 39
#> Event Free Rate (%) 84.89 75.25 71.86
#> 95% CI (76.24, 93.53) (65.32, 85.17) (60.14, 83.57)
#> Difference in Event Free Rate -9.64 -13.03
#> 95% CI (-22.80, 3.52) (-27.59, 1.53)
#> p-value (Z-test) 0.1511 0.0794