Count number of patients and sum exposure across all patients in columns
Source:R/summarize_patients_exposure_in_cols.R
summarize_patients_exposure_in_cols.Rd
The analyze function analyze_patients_exposure_in_cols()
creates a layout element to count total numbers of
patients and sum an analysis value (i.e. exposure) across all patients in columns.
The primary analysis variable ex_var
is the exposure variable used to calculate the sum_exposure
statistic. The
id
variable is used to uniquely identify patients in the data such that only unique patients are counted in the
n_patients
statistic, and the var
variable is used to create a row split if needed. The percentage returned as
part of the n_patients
statistic is the proportion of all records that correspond to a unique patient.
The summarize function summarize_patients_exposure_in_cols()
performs the same function as
analyze_patients_exposure_in_cols()
except it creates content rows, not data rows, to summarize the current table
row/column context and operates on the level of the latest row split or the root of the table if no row splits have
occurred.
If a column split has not yet been performed in the table, col_split
must be set to TRUE
for the first call of
analyze_patients_exposure_in_cols()
or summarize_patients_exposure_in_cols()
.
Usage
analyze_patients_exposure_in_cols(
lyt,
var = NULL,
ex_var = "AVAL",
id = "USUBJID",
add_total_level = FALSE,
custom_label = NULL,
col_split = TRUE,
na_str = default_na_str(),
.stats = c("n_patients", "sum_exposure"),
.labels = c(n_patients = "Patients", sum_exposure = "Person time"),
.indent_mods = 0L,
...
)
summarize_patients_exposure_in_cols(
lyt,
var,
ex_var = "AVAL",
id = "USUBJID",
add_total_level = FALSE,
custom_label = NULL,
col_split = TRUE,
na_str = default_na_str(),
...,
.stats = c("n_patients", "sum_exposure"),
.labels = c(n_patients = "Patients", sum_exposure = "Person time"),
.indent_mods = NULL
)
s_count_patients_sum_exposure(
df,
ex_var = "AVAL",
id = "USUBJID",
labelstr = "",
.stats = c("n_patients", "sum_exposure"),
.N_col,
custom_label = NULL
)
a_count_patients_sum_exposure(
df,
var = NULL,
ex_var = "AVAL",
id = "USUBJID",
add_total_level = FALSE,
custom_label = NULL,
labelstr = "",
.N_col,
.stats,
.formats = list(n_patients = "xx (xx.x%)", sum_exposure = "xx")
)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- ex_var
(
string
)
name of the variable indf
containing exposure values.- id
(
string
)
subject variable name.- add_total_level
(
flag
)
adds a "total" level after the others which includes all the levels that constitute the split. A custom label can be set for this level via thecustom_label
argument.- custom_label
(
string
orNULL
)
if provided andlabelstr
is empty, this will be used as label.- col_split
(
flag
)
whether the columns should be split. Set toFALSE
when the required column split has been done already earlier in the layout pipe.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- .stats
(
character
)
statistics to select for the table. Runget_stats("analyze_patients_exposure_in_cols")
to see available statistics for this function.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- ...
additional arguments for the lower level functions.
- df
(
data.frame
)
data set containing all analysis variables.- labelstr
(
string
)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). Seertables::summarize_row_groups()
for more information.- .N_col
(
integer(1)
)
column-wise N (column count) for the full column being analyzed that is typically passed byrtables
.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.
Value
analyze_patients_exposure_in_cols()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted data rows, with the statistics froms_count_patients_sum_exposure()
arranged in columns, to the table layout.
summarize_patients_exposure_in_cols()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted content rows, with the statistics froms_count_patients_sum_exposure()
arranged in columns, to the table layout.
-
s_count_patients_sum_exposure()
returns a namedlist
with the statistics:n_patients
: Number of unique patients indf
.sum_exposure
: Sum ofex_var
across all patients indf
.
a_count_patients_sum_exposure()
returns formattedrtables::CellValue()
.
Functions
analyze_patients_exposure_in_cols()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::split_cols_by_multivar()
andrtables::analyze_colvars()
.summarize_patients_exposure_in_cols()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::split_cols_by_multivar()
andrtables::summarize_row_groups()
.s_count_patients_sum_exposure()
: Statistics function which counts numbers of patients and the sum of exposure across all patients.a_count_patients_sum_exposure()
: Analysis function which is used asafun
inrtables::analyze_colvars()
withinanalyze_patients_exposure_in_cols()
and ascfun
inrtables::summarize_row_groups()
withinsummarize_patients_exposure_in_cols()
.
Note
As opposed to summarize_patients_exposure_in_cols()
which generates content rows,
analyze_patients_exposure_in_cols()
generates data rows which will not be repeated on multiple
pages when pagination is used.
Examples
set.seed(1)
df <- data.frame(
USUBJID = c(paste("id", seq(1, 12), sep = "")),
ARMCD = c(rep("ARM A", 6), rep("ARM B", 6)),
SEX = c(rep("Female", 6), rep("Male", 6)),
AVAL = as.numeric(sample(seq(1, 20), 12)),
stringsAsFactors = TRUE
)
adsl <- data.frame(
USUBJID = c(paste("id", seq(1, 12), sep = "")),
ARMCD = c(rep("ARM A", 2), rep("ARM B", 2)),
SEX = c(rep("Female", 2), rep("Male", 2)),
stringsAsFactors = TRUE
)
lyt <- basic_table() %>%
split_cols_by("ARMCD", split_fun = add_overall_level("Total", first = FALSE)) %>%
summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE) %>%
analyze_patients_exposure_in_cols(var = "SEX", col_split = FALSE)
result <- build_table(lyt, df = df, alt_counts_df = adsl)
result
#> ARM A ARM B Total
#> Patients Person time Patients Person time Patients Person time
#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
#> Total patients numbers/person time 6 (100.0%) 46 6 (100.0%) 68 12 (100.0%) 114
#> Female 6 (100.0%) 46 0 (0.0%) 0 6 (50.0%) 46
#> Male 0 (0.0%) 0 6 (100.0%) 68 6 (50.0%) 68
lyt2 <- basic_table() %>%
split_cols_by("ARMCD", split_fun = add_overall_level("Total", first = FALSE)) %>%
summarize_patients_exposure_in_cols(
var = "AVAL", col_split = TRUE,
.stats = "n_patients", custom_label = "some custom label"
) %>%
analyze_patients_exposure_in_cols(var = "SEX", col_split = FALSE, ex_var = "AVAL")
result2 <- build_table(lyt2, df = df, alt_counts_df = adsl)
result2
#> ARM A ARM B Total
#> Patients Patients Patients
#> —————————————————————————————————————————————————————————
#> some custom label 6 (100.0%) 6 (100.0%) 12 (100.0%)
#> Female 6 (100.0%) 0 (0.0%) 6 (50.0%)
#> Male 0 (0.0%) 6 (100.0%) 6 (50.0%)
lyt3 <- basic_table() %>%
analyze_patients_exposure_in_cols(var = "SEX", col_split = TRUE, ex_var = "AVAL")
result3 <- build_table(lyt3, df = df, alt_counts_df = adsl)
result3
#> Patients Person time
#> ————————————————————————————————
#> Female 6 (50.0%) 46
#> Male 6 (50.0%) 68
# Adding total levels and custom label
lyt4 <- basic_table(
show_colcounts = TRUE
) %>%
analyze_patients_exposure_in_cols(
var = "ARMCD",
col_split = TRUE,
add_total_level = TRUE,
custom_label = "TOTAL"
) %>%
append_topleft(c("", "Sex"))
result4 <- build_table(lyt4, df = df, alt_counts_df = adsl)
result4
#> Patients Person time
#> Sex (N=12) (N=12)
#> —————————————————————————————————
#> ARM A 6 (50.0%) 46
#> ARM B 6 (50.0%) 68
#> TOTAL 12 (100.0%) 114
lyt5 <- basic_table() %>%
summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE)
result5 <- build_table(lyt5, df = df, alt_counts_df = adsl)
result5
#> Patients Person time
#> ——————————————————————————————————————————————————————————————
#> Total patients numbers/person time 12 (100.0%) 114
lyt6 <- basic_table() %>%
summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE, .stats = "sum_exposure")
result6 <- build_table(lyt6, df = df, alt_counts_df = adsl)
result6
#> Person time
#> ————————————————————————————————————————————————
#> Total patients numbers/person time 114
a_count_patients_sum_exposure(
df = df,
var = "SEX",
.N_col = nrow(df),
.stats = "n_patients"
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 Female 6 (50.0%) 0 Female
#> 2 Male 6 (50.0%) 0 Male