The analyze function analyze_num_patients()
creates a layout element to count total numbers of unique or
non-unique patients. The primary analysis variable vars
is used to uniquely identify patients.
The count_by
variable can be used to identify non-unique patients such that the number of patients with a unique
combination of values in vars
and count_by
will be returned instead as the nonunique
statistic. The required
variable can be used to specify a variable required to be non-missing for the record to be included in the counts.
The summarize function summarize_num_patients()
performs the same function as analyze_num_patients()
except it
creates content rows, not data rows, to summarize the current table row/column context and operates on the level of
the latest row split or the root of the table if no row splits have occurred.
Usage
analyze_num_patients(
lyt,
vars,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE,
na_str = default_na_str(),
nested = TRUE,
.stats = NULL,
.formats = NULL,
.labels = c(unique = "Number of patients with at least one event", nonunique =
"Number of events"),
show_labels = c("default", "visible", "hidden"),
.indent_mods = 0L,
riskdiff = FALSE,
...
)
summarize_num_patients(
lyt,
var,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE,
na_str = default_na_str(),
.stats = NULL,
.formats = NULL,
.labels = c(unique = "Number of patients with at least one event", nonunique =
"Number of events"),
.indent_mods = 0L,
riskdiff = FALSE,
...
)
s_num_patients(
x,
labelstr,
.N_col,
count_by = NULL,
unique_count_suffix = TRUE
)
s_num_patients_content(
df,
labelstr = "",
.N_col,
.var,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE
)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- required
(
character
orNULL
)
name of a variable that is required to be non-missing.- count_by
(
character
orNULL
)
name of a variable to be combined withvars
when countingnonunique
records.- unique_count_suffix
(
flag
)
whether the"(n)"
suffix should be added tounique_count
labels. Defaults toTRUE
.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- .stats
(
character
)
statistics to select for the table. Runget_stats("summarize_num_patients")
to see available statistics for this function.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .labels
(named
character
)
labels for the statistics (without indent).- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- riskdiff
(
flag
)
whether a risk difference column is present. When set toTRUE
,add_riskdiff()
must be used assplit_fun
in the prior column split of the table layout, specifying which columns should be compared. Seestat_propdiff_ci()
for details on risk difference calculation.- ...
additional arguments for the lower level functions.
- x
(
character
orfactor
)
vector of patient IDs.- labelstr
(
string
)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). Seertables::summarize_row_groups()
for more information.- .N_col
(
integer(1)
)
column-wise N (column count) for the full column being analyzed that is typically passed byrtables
.- df
(
data.frame
)
data set containing all analysis variables.- .var, var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.
Value
analyze_num_patients()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_num_patients_content()
to the table layout.
summarize_num_patients()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_num_patients_content()
to the table layout.
-
s_num_patients()
returns a namedlist
of 3 statistics:unique
: Vector of counts and percentages.nonunique
: Vector of counts.unique_count
: Counts.
s_num_patients_content()
returns the same values ass_num_patients()
.
Details
In general, functions that starts with analyze*
are expected to
work like rtables::analyze()
, while functions that starts with summarize*
are based upon rtables::summarize_row_groups()
. The latter provides a
value for each dividing split in the row and column space, but, being it
bound to the fundamental splits, it is repeated by design in every page
when pagination is involved.
Functions
analyze_num_patients()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.summarize_num_patients()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::summarize_row_groups()
.s_num_patients()
: Statistics function which counts the number of unique patients, the corresponding percentage taken with respect to the total number of patients, and the number of non-unique patients.s_num_patients_content()
: Statistics function which counts the number of unique patients in a column (variable), the corresponding percentage taken with respect to the total number of patients, and the number of non-unique patients in the column.
Examples
df <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA, 6, 6, 8, 9)),
ARM = c("A", "A", "A", "A", "A", "B", "B", "B", "B"),
AGE = c(10, 15, 10, 17, 8, 11, 11, 19, 17),
SEX = c("M", "M", "M", "F", "F", "F", "M", "F", "M")
)
# analyze_num_patients
tbl <- basic_table() %>%
split_cols_by("ARM") %>%
add_colcounts() %>%
analyze_num_patients("USUBJID", .stats = c("unique")) %>%
build_table(df)
tbl
#> A B
#> (N=5) (N=4)
#> ——————————————————————————————————————————————————————————————————
#> Number of patients with at least one event 3 (60.0%) 3 (75.0%)
# summarize_num_patients
tbl <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
summarize_num_patients("USUBJID", .stats = "unique_count") %>%
build_table(df)
tbl
#> A B
#> —————————————
#> M (n) 2 2
#> F (n) 1 2
# Use the statistics function to count number of unique and nonunique patients.
s_num_patients(x = as.character(c(1, 1, 1, 2, 4, NA)), labelstr = "", .N_col = 6L)
#> $unique
#> [1] 3.0 0.5
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 5
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
s_num_patients(
x = as.character(c(1, 1, 1, 2, 4, NA)),
labelstr = "",
.N_col = 6L,
count_by = c(1, 1, 2, 1, 1, 1)
)
#> $unique
#> [1] 3.0 0.5
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 4
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
# Count number of unique and non-unique patients.
df <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA)),
EVENT = as.character(c(10, 15, 10, 17, 8))
)
s_num_patients_content(df, .N_col = 5, .var = "USUBJID")
#> $unique
#> [1] 3.0 0.6
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 4
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
df_by_event <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA)),
EVENT = c(10, 15, 10, 17, 8)
)
s_num_patients_content(df_by_event, .N_col = 5, .var = "USUBJID", count_by = "EVENT")
#> $unique
#> [1] 3.0 0.6
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 3
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>