Summarize change from baseline values or absolute baseline values
Source:R/summarize_change.R
summarize_change.Rd
The analyze function summarize_change()
creates a layout element to summarize the change from baseline or absolute
baseline values. The primary analysis variable vars
indicates the numerical change from baseline results.
Required secondary analysis variables value
and baseline_flag
can be supplied to the function via
the variables
argument. The value
element should be the name of the analysis value variable, and the
baseline_flag
element should be the name of the flag variable that indicates whether or not records contain
baseline values. Depending on the baseline flag given, either the absolute baseline values (at baseline)
or the change from baseline values (post-baseline) are then summarized.
Usage
summarize_change(
lyt,
vars,
variables,
na_str = default_na_str(),
nested = TRUE,
...,
table_names = vars,
.stats = c("n", "mean_sd", "median", "range"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_change_from_baseline(df, .var, variables, na.rm = TRUE, ...)
a_change_from_baseline(df, .var, variables, na.rm = TRUE, ...)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- variables
(named
list
ofstring
)
list of additional analysis variables.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
additional arguments for the lower level functions.
- table_names
(
character
)
this can be customized in the case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
(
character
)
statistics to select for the table. Runget_stats("analyze_vars_numeric)
to see available statistics for this function.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
(
data.frame
)
data set containing all analysis variables.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- na.rm
(
flag
)
whetherNA
values should be removed fromx
prior to analysis.
Value
summarize_change()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_change_from_baseline()
to the table layout.
s_change_from_baseline()
returns the same values returned bys_summary.numeric()
.
a_change_from_baseline()
returns the corresponding list with formattedrtables::CellValue()
.
Functions
summarize_change()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.s_change_from_baseline()
: Statistics function that summarizes baseline or post-baseline visits.a_change_from_baseline()
: Formatted analysis function which is used asafun
insummarize_change()
.
Note
To be used after a split on visits in the layout, such that each data subset only contains either baseline or post-baseline data.
The data in df
must be either all be from baseline or post-baseline visits. Otherwise
an error will be thrown.
Examples
library(dplyr)
## Fabricate dataset
dta_test <- data.frame(
USUBJID = rep(1:6, each = 3),
AVISIT = rep(paste0("V", 1:3), 6),
ARM = rep(LETTERS[1:3], rep(6, 3)),
AVAL = c(9:1, rep(NA, 9))
) %>%
mutate(ABLFLL = AVISIT == "V1") %>%
group_by(USUBJID) %>%
mutate(
BLVAL = AVAL[ABLFLL],
CHG = AVAL - BLVAL
) %>%
ungroup()
results <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("AVISIT") %>%
summarize_change("CHG", variables = list(value = "AVAL", baseline_flag = "ABLFLL")) %>%
build_table(dta_test)
results
#> A B C
#> ———————————————————————————————————————————————————————————
#> V1
#> n 2 1 0
#> Mean (SD) 7.50 (2.12) 3.00 (<Missing>) <Missing>
#> Median 7.50 3.00 <Missing>
#> Min - Max 6.00 - 9.00 3.00 - 3.00 <Missing>
#> V2
#> n 2 1 0
#> Mean (SD) -1.00 (0.00) -1.00 (<Missing>) <Missing>
#> Median -1.00 -1.00 <Missing>
#> Min - Max -1.00 - -1.00 -1.00 - -1.00 <Missing>
#> V3
#> n 2 1 0
#> Mean (SD) -2.00 (0.00) -2.00 (<Missing>) <Missing>
#> Median -2.00 -2.00 <Missing>
#> Min - Max -2.00 - -2.00 -2.00 - -2.00 <Missing>