Helper functions for tabulating binary response by subgroup
Source:R/h_response_subgroups.R
h_response_subgroups.Rd
Helper functions that tabulate in a data frame statistics such as response rate and odds ratio for population subgroups.
Usage
h_proportion_df(rsp, arm)
h_proportion_subgroups_df(
variables,
data,
groups_lists = list(),
label_all = "All Patients"
)
h_odds_ratio_df(rsp, arm, strata_data = NULL, conf_level = 0.95, method = NULL)
h_odds_ratio_subgroups_df(
variables,
data,
groups_lists = list(),
conf_level = 0.95,
method = NULL,
label_all = "All Patients"
)
Arguments
- rsp
(
logical
)
vector indicating whether each subject is a responder or not.- arm
(
factor
)
the treatment group variable.- variables
(named
list
ofstring
)
list of additional analysis variables.- data
(
data.frame
)
the dataset containing the variables to summarize.- groups_lists
(named
list
oflist
)
optionally contains for eachsubgroups
variable a list, which specifies the new group levels via the names and the levels that belong to it in the character vectors that are elements of the list.- label_all
(
string
)
label for the total population analysis.- strata_data
(
factor
,data.frame
, orNULL
)
required if stratified analysis is performed.- conf_level
(
proportion
)
confidence level of the interval.- method
(
string
orNULL
)
specifies the test used to calculate the p-value for the difference between two proportions. For options, seetest_proportion_diff()
. Default isNULL
so no test is performed.
Value
h_proportion_df()
returns adata.frame
with columnsarm
,n
,n_rsp
, andprop
.
h_proportion_subgroups_df()
returns adata.frame
with columnsarm
,n
,n_rsp
,prop
,subgroup
,var
,var_label
, androw_type
.
h_odds_ratio_df()
returns adata.frame
with columnsarm
,n_tot
,or
,lcl
,ucl
,conf_level
, and optionallypval
andpval_label
.
h_odds_ratio_subgroups_df()
returns adata.frame
with columnsarm
,n_tot
,or
,lcl
,ucl
,conf_level
,subgroup
,var
,var_label
, androw_type
.
Functions
h_proportion_df()
: Helper to prepare a data frame of binary responses by arm.h_proportion_subgroups_df()
: Summarizes proportion of binary responses by arm and across subgroups in a data frame.variables
corresponds to the names of variables found indata
, passed as a named list and requires elementsrsp
,arm
and optionallysubgroups
.groups_lists
optionally specifies groupings forsubgroups
variables.h_odds_ratio_df()
: Helper to prepare a data frame with estimates of the odds ratio between a treatment and a control arm.h_odds_ratio_subgroups_df()
: Summarizes estimates of the odds ratio between a treatment and a control arm across subgroups in a data frame.variables
corresponds to the names of variables found indata
, passed as a named list and requires elementsrsp
,arm
and optionallysubgroups
andstrata
.groups_lists
optionally specifies groupings forsubgroups
variables.
Examples
library(dplyr)
library(forcats)
adrs <- tern_ex_adrs
adrs_labels <- formatters::var_labels(adrs)
adrs_f <- adrs %>%
filter(PARAMCD == "BESRSPI") %>%
filter(ARM %in% c("A: Drug X", "B: Placebo")) %>%
droplevels() %>%
mutate(
# Reorder levels of factor to make the placebo group the reference arm.
ARM = fct_relevel(ARM, "B: Placebo"),
rsp = AVALC == "CR"
)
formatters::var_labels(adrs_f) <- c(adrs_labels, "Response")
h_proportion_df(
c(TRUE, FALSE, FALSE),
arm = factor(c("A", "A", "B"), levels = c("A", "B"))
)
#> arm n n_rsp prop
#> 1 A 2 1 0.5
#> 2 B 1 0 0.0
h_proportion_subgroups_df(
variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
data = adrs_f
)
#> arm n n_rsp prop subgroup var
#> 1 B: Placebo 73 50 0.6849315 All Patients ALL
#> 2 A: Drug X 69 59 0.8550725 All Patients ALL
#> 3 B: Placebo 40 25 0.6250000 F SEX
#> 4 A: Drug X 38 36 0.9473684 F SEX
#> 5 B: Placebo 33 25 0.7575758 M SEX
#> 6 A: Drug X 31 23 0.7419355 M SEX
#> 7 B: Placebo 24 13 0.5416667 LOW BMRKR2
#> 8 A: Drug X 26 21 0.8076923 LOW BMRKR2
#> 9 B: Placebo 23 17 0.7391304 MEDIUM BMRKR2
#> 10 A: Drug X 26 23 0.8846154 MEDIUM BMRKR2
#> 11 B: Placebo 26 20 0.7692308 HIGH BMRKR2
#> 12 A: Drug X 17 15 0.8823529 HIGH BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Sex analysis
#> 4 Sex analysis
#> 5 Sex analysis
#> 6 Sex analysis
#> 7 Continuous Level Biomarker 2 analysis
#> 8 Continuous Level Biomarker 2 analysis
#> 9 Continuous Level Biomarker 2 analysis
#> 10 Continuous Level Biomarker 2 analysis
#> 11 Continuous Level Biomarker 2 analysis
#> 12 Continuous Level Biomarker 2 analysis
# Define groupings for BMRKR2 levels.
h_proportion_subgroups_df(
variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
data = adrs_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
#> arm n n_rsp prop subgroup var
#> 1 B: Placebo 73 50 0.6849315 All Patients ALL
#> 2 A: Drug X 69 59 0.8550725 All Patients ALL
#> 3 B: Placebo 40 25 0.6250000 F SEX
#> 4 A: Drug X 38 36 0.9473684 F SEX
#> 5 B: Placebo 33 25 0.7575758 M SEX
#> 6 A: Drug X 31 23 0.7419355 M SEX
#> 7 B: Placebo 24 13 0.5416667 low BMRKR2
#> 8 A: Drug X 26 21 0.8076923 low BMRKR2
#> 9 B: Placebo 47 30 0.6382979 low/medium BMRKR2
#> 10 A: Drug X 52 44 0.8461538 low/medium BMRKR2
#> 11 B: Placebo 73 50 0.6849315 low/medium/high BMRKR2
#> 12 A: Drug X 69 59 0.8550725 low/medium/high BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Sex analysis
#> 4 Sex analysis
#> 5 Sex analysis
#> 6 Sex analysis
#> 7 Continuous Level Biomarker 2 analysis
#> 8 Continuous Level Biomarker 2 analysis
#> 9 Continuous Level Biomarker 2 analysis
#> 10 Continuous Level Biomarker 2 analysis
#> 11 Continuous Level Biomarker 2 analysis
#> 12 Continuous Level Biomarker 2 analysis
# Unstratatified analysis.
h_odds_ratio_df(
c(TRUE, FALSE, FALSE, TRUE),
arm = factor(c("A", "A", "B", "B"), levels = c("A", "B"))
)
#> arm n_tot or lcl ucl conf_level
#> 1 4 1 0.01984252 50.39681 0.95
# Include p-value.
h_odds_ratio_df(adrs_f$rsp, adrs_f$ARM, method = "chisq")
#> arm n_tot or lcl ucl conf_level pval
#> 1 142 2.714 1.180449 6.239827 0.95 0.01643036
#> pval_label
#> 1 p-value (Chi-Squared Test)
# Stratatified analysis.
h_odds_ratio_df(
rsp = adrs_f$rsp,
arm = adrs_f$ARM,
strata_data = adrs_f[, c("STRATA1", "STRATA2")],
method = "cmh"
)
#> arm n_tot or lcl ucl conf_level pval
#> 1 142 2.665586 1.146149 6.199324 0.95 0.02019665
#> pval_label
#> 1 p-value (Cochran-Mantel-Haenszel Test)
# Unstratified analysis.
h_odds_ratio_subgroups_df(
variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
data = adrs_f
)
#> arm n_tot or lcl ucl conf_level subgroup var
#> 1 142 2.714000 1.1804488 6.239827 0.95 All Patients ALL
#> 2 78 10.800000 2.2669576 51.452218 0.95 F SEX
#> 3 64 0.920000 0.2966470 2.853223 0.95 M SEX
#> 4 50 3.553846 1.0047370 12.570277 0.95 LOW BMRKR2
#> 5 49 2.705882 0.5911718 12.385232 0.95 MEDIUM BMRKR2
#> 6 43 2.250000 0.3970298 12.750933 0.95 HIGH BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 Sex analysis
#> 3 Sex analysis
#> 4 Continuous Level Biomarker 2 analysis
#> 5 Continuous Level Biomarker 2 analysis
#> 6 Continuous Level Biomarker 2 analysis
# Stratified analysis.
h_odds_ratio_subgroups_df(
variables = list(
rsp = "rsp",
arm = "ARM",
subgroups = c("SEX", "BMRKR2"),
strata = c("STRATA1", "STRATA2")
),
data = adrs_f
)
#> arm n_tot or lcl ucl conf_level subgroup var
#> 1 142 2.6655860 1.1461490 6.199324 0.95 All Patients ALL
#> 2 78 7.7065093 1.5817529 37.547132 0.95 F SEX
#> 3 64 0.9572284 0.2990954 3.063525 0.95 M SEX
#> 4 50 3.0323726 0.8833232 10.409875 0.95 LOW BMRKR2
#> 5 49 2.1264996 0.4312008 10.486995 0.95 MEDIUM BMRKR2
#> 6 43 2.5134820 0.4351747 14.517370 0.95 HIGH BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 Sex analysis
#> 3 Sex analysis
#> 4 Continuous Level Biomarker 2 analysis
#> 5 Continuous Level Biomarker 2 analysis
#> 6 Continuous Level Biomarker 2 analysis
# Define groupings of BMRKR2 levels.
h_odds_ratio_subgroups_df(
variables = list(
rsp = "rsp",
arm = "ARM",
subgroups = c("SEX", "BMRKR2")
),
data = adrs_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
#> arm n_tot or lcl ucl conf_level subgroup var
#> 1 142 2.714000 1.180449 6.239827 0.95 All Patients ALL
#> 2 78 10.800000 2.266958 51.452218 0.95 F SEX
#> 3 64 0.920000 0.296647 2.853223 0.95 M SEX
#> 4 50 3.553846 1.004737 12.570277 0.95 low BMRKR2
#> 5 99 3.116667 1.193409 8.139385 0.95 low/medium BMRKR2
#> 6 142 2.714000 1.180449 6.239827 0.95 low/medium/high BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 Sex analysis
#> 3 Sex analysis
#> 4 Continuous Level Biomarker 2 analysis
#> 5 Continuous Level Biomarker 2 analysis
#> 6 Continuous Level Biomarker 2 analysis