The layout-creating function analyze_vars_in_cols() creates a layout element to generate a column-wise
analysis table.
This function sets the analysis methods as column labels and is a wrapper for rtables::analyze_colvars().
It was designed principally for PK tables.
Usage
analyze_vars_in_cols(
lyt,
vars,
...,
.stats = c("n", "mean", "sd", "se", "cv", "geom_cv"),
.labels = c(n = "n", mean = "Mean", sd = "SD", se = "SE", cv = "CV (%)", geom_cv =
"CV % Geometric Mean"),
row_labels = NULL,
do_summarize_row_groups = FALSE,
split_col_vars = TRUE,
imp_rule = NULL,
avalcat_var = "AVALCAT1",
cache = FALSE,
.indent_mods = NULL,
na_str = default_na_str(),
nested = TRUE,
.formats = NULL,
.aligns = NULL
)Arguments
- lyt
(
PreDataTableLayouts)
layout that analyses will be added to.- vars
(
character)
variable names for the primary analysis variable to be iterated over.- ...
additional arguments for the lower level functions.
- .stats
(
character)
statistics to select for the table.- .labels
(named
character)
labels for the statistics (without indent).- row_labels
(
character)
as this function works in columns space, usually.labelscharacter vector applies on the column space. You can change the row labels by defining this parameter to a named character vector with names corresponding to the split values. It defaults toNULLand if it contains only onestring, it will duplicate that as a row label.- do_summarize_row_groups
(
flag)
defaults toFALSEand applies the analysis to the current label rows. This is a wrapper ofrtables::summarize_row_groups()and it can acceptlabelstrto define row labels. This behavior is not supported as we never need to overload row labels.- split_col_vars
(
flag)
defaults toTRUEand puts the analysis results onto the columns. This option allows you to add multiple instances of this functions, also in a nested fashion, without adding more splits. This split must happen only one time on a single layout.- imp_rule
(
stringorNULL)
imputation rule setting. Defaults toNULLfor no imputation rule. Can also be"1/3"to implement 1/3 imputation rule or"1/2"to implement 1/2 imputation rule. In order to use an imputation rule, theavalcat_varargument must be specified. Seeimputation_rule()for more details on imputation.- avalcat_var
(
string)
ifimp_ruleis notNULL, name of variable that indicates whether a row in the data corresponds to an analysis value in category"BLQ","LTR","<PCLLOQ", or none of the above (defaults to"AVALCAT1"). Variable must be present in the data and should match the variable used to calculate then_blqstatistic (if included in.stats).- cache
(
flag)
whether to store computed values in a temporary caching environment. This will speed up calculations in large tables, but should be set toFALSEif the samertablelayout is used for multiple tables with different data. Defaults toFALSE.- .indent_mods
(named
integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- na_str
(
string)
string used to replace allNAor empty values in the output.- nested
(
flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.- .formats
(named
characterorlist)
formats for the statistics. See Details inanalyze_varsfor more information on the"auto"setting.- .aligns
(
characterorNULL)
alignment for table contents (not including labels). WhenNULL,"center"is applied. Seeformatters::list_valid_aligns()for a list of all currently supported alignments.
Value
A layout object suitable for passing to further layouting functions, or to rtables::build_table().
Adding this function to an rtable layout will summarize the given variables, arrange the output
in columns, and add it to the table layout.
Note
This is an experimental implementation of
rtables::summarize_row_groups()andrtables::analyze_colvars()that may be subjected to changes asrtablesextends its support to more complex analysis pipelines in the column space. We encourage users to read the examples carefully and file issues for different use cases.In this function,
labelstrbehaves atypically. Iflabelstr = NULL(the default), row labels are assigned automatically as the split values ifdo_summarize_row_groups = FALSE(the default), and as the group label ifdo_summarize_row_groups = TRUE.
Examples
library(dplyr)
# Data preparation
adpp <- tern_ex_adpp %>% h_pkparam_sort()
lyt <- basic_table() %>%
split_rows_by(var = "STRATA1", label_pos = "topleft") %>%
split_rows_by(
var = "SEX",
label_pos = "topleft",
child_labels = "hidden"
) %>% # Removes duplicated labels
analyze_vars_in_cols(vars = "AGE")
result <- build_table(lyt = lyt, df = adpp)
result
#> STRATA1
#> SEX n Mean SD SE CV (%) CV % Geometric Mean
#> ————————————————————————————————————————————————————————————————
#> A
#> F 81 38.8 5.4 0.6 13.8 14.3
#> M 81 38.9 5.9 0.7 15.1 14.9
#> B
#> F 90 36.0 6.4 0.7 17.7 17.9
#> M 81 36.4 6.5 0.7 17.9 17.8
#> C
#> F 117 34.1 6.2 0.6 18.2 18.3
#> M 72 33.2 11.5 1.4 34.6 31.6
# By selecting just some statistics and ad-hoc labels
lyt <- basic_table() %>%
split_rows_by(var = "ARM", label_pos = "topleft") %>%
split_rows_by(
var = "SEX",
label_pos = "topleft",
child_labels = "hidden",
split_fun = drop_split_levels
) %>%
analyze_vars_in_cols(
vars = "AGE",
.stats = c("n", "cv", "geom_mean"),
.labels = c(
n = "aN",
cv = "aCV",
geom_mean = "aGeomMean"
)
)
result <- build_table(lyt = lyt, df = adpp)
result
#> ARM
#> SEX aN aCV aGeomMean
#> ———————————————————————————————————————
#> A: Drug X
#> B: Placebo
#> C: Combination
#> F 288 17.6 35.5
#> M 234 23.4 35.3
# Changing row labels
lyt <- basic_table() %>%
analyze_vars_in_cols(
vars = "AGE",
row_labels = "some custom label"
)
result <- build_table(lyt, df = adpp)
result
#> n Mean SD SE CV (%) CV % Geometric Mean
#> —————————————————————————————————————————————————————————————————————————
#> some custom label 522 36.1 7.4 0.3 20.4 20.6
# Pharmacokinetic parameters
lyt <- basic_table() %>%
split_rows_by(
var = "TLG_DISPLAY",
split_label = "PK Parameter",
label_pos = "topleft",
child_labels = "hidden"
) %>%
analyze_vars_in_cols(
vars = "AVAL"
)
result <- build_table(lyt, df = adpp)
result
#> PK Parameter n Mean SD SE CV (%) CV % Geometric Mean
#> —————————————————————————————————————————————————————————————————————
#> Cmax 58 29.7 5.6 0.7 19.0 19.3
#> AUCinf obs 58 207.5 34.9 4.6 16.8 17.3
#> CL obs 58 5.1 1.0 0.1 20.6 22.7
#> Ae 58 1.5 0.3 0.0 21.3 24.1
#> Fe 58 15.7 3.6 0.5 22.7 24.0
#> CLR 58 0.0 0.0 0.0 19.9 22.2
#> Rmax 58 9.6 2.0 0.3 21.1 21.6
#> Tonset 58 3.0 0.7 0.1 22.4 23.3
#> RENALCLD 58 0.0 0.0 0.0 19.0 19.4
# Multiple calls (summarize label and analyze underneath)
lyt <- basic_table() %>%
split_rows_by(
var = "TLG_DISPLAY",
split_label = "PK Parameter",
label_pos = "topleft"
) %>%
analyze_vars_in_cols(
vars = "AVAL",
do_summarize_row_groups = TRUE # does a summarize level
) %>%
split_rows_by("SEX",
child_labels = "hidden",
label_pos = "topleft"
) %>%
analyze_vars_in_cols(
vars = "AVAL",
split_col_vars = FALSE # avoids re-splitting the columns
)
result <- build_table(lyt, df = adpp)
result
#> PK Parameter
#> SEX n Mean SD SE CV (%) CV % Geometric Mean
#> —————————————————————————————————————————————————————————————————————
#> Cmax 58 29.7 5.6 0.7 19.0 19.3
#> F 32 30.1 6.1 1.1 20.4 21.0
#> M 26 29.2 5.0 1.0 17.2 17.2
#> AUCinf obs 58 207.5 34.9 4.6 16.8 17.3
#> F 32 209.5 43.3 7.7 20.7 21.6
#> M 26 205.0 20.9 4.1 10.2 10.4
#> CL obs 58 5.1 1.0 0.1 20.6 22.7
#> F 32 5.1 1.1 0.2 20.8 23.2
#> M 26 5.1 1.1 0.2 20.7 22.5
#> Ae 58 1.5 0.3 0.0 21.3 24.1
#> F 32 1.5 0.3 0.1 19.3 20.8
#> M 26 1.5 0.4 0.1 23.9 27.9
#> Fe 58 15.7 3.6 0.5 22.7 24.0
#> F 32 16.3 3.4 0.6 20.9 22.3
#> M 26 15.0 3.7 0.7 24.7 25.6
#> CLR 58 0.0 0.0 0.0 19.9 22.2
#> F 32 0.0 0.0 0.0 20.5 24.8
#> M 26 0.0 0.0 0.0 19.5 18.9
#> Rmax 58 9.6 2.0 0.3 21.1 21.6
#> F 32 9.6 2.2 0.4 22.4 23.5
#> M 26 9.6 1.9 0.4 19.7 19.5
#> Tonset 58 3.0 0.7 0.1 22.4 23.3
#> F 32 3.0 0.7 0.1 24.7 25.9
#> M 26 3.0 0.6 0.1 19.8 20.0
#> RENALCLD 58 0.0 0.0 0.0 19.0 19.4
#> F 32 0.0 0.0 0.0 19.6 20.4
#> M 26 0.0 0.0 0.0 18.0 17.6
