Usage
estimate_proportion_diff(
lyt,
vars,
variables = list(strata = NULL),
conf_level = 0.95,
method = c("waldcc", "wald", "cmh", "ha", "newcombe", "newcombecc", "strat_newcombe",
"strat_newcombecc"),
weights_method = "cmh",
na_str = default_na_str(),
nested = TRUE,
...,
var_labels = vars,
show_labels = "hidden",
table_names = vars,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_proportion_diff(
df,
.var,
.ref_group,
.in_ref_col,
variables = list(strata = NULL),
conf_level = 0.95,
method = c("waldcc", "wald", "cmh", "ha", "newcombe", "newcombecc", "strat_newcombe",
"strat_newcombecc"),
weights_method = "cmh"
)
a_proportion_diff(
df,
.var,
.ref_group,
.in_ref_col,
variables = list(strata = NULL),
conf_level = 0.95,
method = c("waldcc", "wald", "cmh", "ha", "newcombe", "newcombecc", "strat_newcombe",
"strat_newcombecc"),
weights_method = "cmh"
)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- variables
(named
list
ofstring
)
list of additional analysis variables.- conf_level
(
proportion
)
confidence level of the interval.- method
(
string
)
the method used for the confidence interval estimation.- weights_method
(
string
)
weights method. Can be either"cmh"
or"heuristic"
and directs the way weights are estimated.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
additional arguments for the lower level functions.
- var_labels
(
character
)
variable labels.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character
)
this can be customized in the case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
(
character
)
statistics to select for the table. Runget_stats("estimate_proportion_diff")
to see available statistics for this function.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
(
data.frame
)
data set containing all analysis variables.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- .ref_group
(
data.frame
orvector
)
the data corresponding to the reference group.- .in_ref_col
(
flag
)TRUE
when working with the reference level,FALSE
otherwise.
Value
estimate_proportion_diff()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_proportion_diff()
to the table layout.
s_proportion_diff()
returns a named list of elementsdiff
anddiff_ci
.
a_proportion_diff()
returns the corresponding list with formattedrtables::CellValue()
.
Functions
estimate_proportion_diff()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.s_proportion_diff()
: Statistics function estimating the difference in terms of responder proportion.a_proportion_diff()
: Formatted analysis function which is used asafun
inestimate_proportion_diff()
.
Note
When performing an unstratified analysis, methods "cmh"
, "strat_newcombe"
, and "strat_newcombecc"
are
not permitted.
Examples
## "Mid" case: 4/4 respond in group A, 1/2 respond in group B.
nex <- 100 # Number of example rows
dta <- data.frame(
"rsp" = sample(c(TRUE, FALSE), nex, TRUE),
"grp" = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("a1", "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE
)
l <- basic_table() %>%
split_cols_by(var = "grp", ref_group = "B") %>%
estimate_proportion_diff(
vars = "rsp",
conf_level = 0.90,
method = "ha"
)
build_table(l, df = dta)
#> A B
#> ——————————————————————————————————————————————————
#> Difference in Response rate (%) 12.0
#> 90% CI (Anderson-Hauck) (-5.4, 29.4)
s_proportion_diff(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
conf_level = 0.90,
method = "ha"
)
#> $diff
#> [1] 12
#> attr(,"label")
#> [1] "Difference in Response rate (%)"
#>
#> $diff_ci
#> [1] -5.374519 29.374519
#> attr(,"label")
#> [1] "90% CI (Anderson-Hauck)"
#>
# CMH example with strata
s_proportion_diff(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
variables = list(strata = c("f1", "f2")),
conf_level = 0.90,
method = "cmh"
)
#> $diff
#> [1] 12.05847
#> attr(,"label")
#> [1] "Difference in Response rate (%)"
#>
#> $diff_ci
#> [1] -2.67057 26.78750
#> attr(,"label")
#> [1] "90% CI (CMH, without correction)"
#>
a_proportion_diff(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
conf_level = 0.90,
method = "ha"
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 diff 12.0 0 Difference in Response rate (%)
#> 2 diff_ci (-5.4, 29.4) 1 90% CI (Anderson-Hauck)