Usage
coxph_pairwise(
  lyt,
  vars,
  na_str = default_na_str(),
  nested = TRUE,
  ...,
  var_labels = "CoxPH",
  show_labels = "visible",
  table_names = vars,
  .stats = c("pvalue", "hr", "hr_ci"),
  .formats = NULL,
  .labels = NULL,
  .indent_mods = NULL
)
s_coxph_pairwise(
  df,
  .ref_group,
  .in_ref_col,
  .var,
  is_event,
  strata = NULL,
  strat = lifecycle::deprecated(),
  control = control_coxph()
)
a_coxph_pairwise(
  df,
  .ref_group,
  .in_ref_col,
  .var,
  is_event,
  strata = NULL,
  strat = lifecycle::deprecated(),
  control = control_coxph()
)Arguments
- lyt
 (
PreDataTableLayouts)
layout that analyses will be added to.- vars
 (
character)
variable names for the primary analysis variable to be iterated over.- na_str
 (
string)
string used to replace allNAor empty values in the output.- nested
 (
flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
 additional arguments for the lower level functions.
- var_labels
 (
character)
variable labels.- show_labels
 (
string)
label visibility: one of "default", "visible" and "hidden".- table_names
 (
character)
this can be customized in the case that the samevarsare analyzed multiple times, to avoid warnings fromrtables.- .stats
 (
character)
statistics to select for the table. Runget_stats("coxph_pairwise")to see available statistics for this function.- .formats
 (named
characterorlist)
formats for the statistics. See Details inanalyze_varsfor more information on the"auto"setting.- .labels
 (named
character)
labels for the statistics (without indent).- .indent_mods
 (named
integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
 (
data.frame)
data set containing all analysis variables.- .ref_group
 (
data.frameorvector)
the data corresponding to the reference group.- .in_ref_col
 (
flag)TRUEwhen working with the reference level,FALSEotherwise.- .var
 (
string)
single variable name that is passed byrtableswhen requested by a statistics function.- is_event
 (
flag)TRUEif event,FALSEif time to event is censored.- strata
 (
characterorNULL)
variable names indicating stratification factors.- strat
 - control
 - 
(
list)
parameters for comparison details, specified by using the helper functioncontrol_coxph(). Some possible parameter options are:pval_method(string)
p-value method for testing hazard ratio = 1. Default method is"log-rank"which comes fromsurvival::survdiff(), can also be set to"wald"or"likelihood"(fromsurvival::coxph()).ties(string)
specifying the method for tie handling. Default is"efron", can also be set to"breslow"or"exact". See more insurvival::coxph()conf_level(proportion)
confidence level of the interval for HR.
 
Value
coxph_pairwise()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_coxph_pairwise()to the table layout.
- 
s_coxph_pairwise()returns the statistics:pvalue: p-value to test HR = 1.hr: Hazard ratio.hr_ci: Confidence interval for hazard ratio.n_tot: Total number of observations.n_tot_events: Total number of events.
 
a_coxph_pairwise()returns the corresponding list with formattedrtables::CellValue().
Functions
coxph_pairwise(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze().s_coxph_pairwise(): Statistics function which analyzes HR, CIs of HR and p-value of acoxphmodel.a_coxph_pairwise(): Formatted analysis function which is used asafunincoxph_pairwise().
Examples
library(dplyr)
adtte_f <- tern_ex_adtte %>%
  filter(PARAMCD == "OS") %>%
  mutate(is_event = CNSR == 0)
df <- adtte_f %>% filter(ARMCD == "ARM A")
df_ref_group <- adtte_f %>% filter(ARMCD == "ARM B")
basic_table() %>%
  split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
  add_colcounts() %>%
  coxph_pairwise(
    vars = "AVAL",
    is_event = "is_event",
    var_labels = "Unstratified Analysis"
  ) %>%
  build_table(df = adtte_f)
#>                         ARM A       ARM B          ARM C    
#>                         (N=69)      (N=73)         (N=58)   
#> ————————————————————————————————————————————————————————————
#> Unstratified Analysis                                       
#>   p-value (log-rank)                0.0905         0.0086   
#>   Hazard Ratio                       1.41           1.81    
#>   95% CI                         (0.95, 2.09)   (1.16, 2.84)
basic_table() %>%
  split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
  add_colcounts() %>%
  coxph_pairwise(
    vars = "AVAL",
    is_event = "is_event",
    var_labels = "Stratified Analysis",
    strata = "SEX",
    control = control_coxph(pval_method = "wald")
  ) %>%
  build_table(df = adtte_f)
#>                       ARM A       ARM B          ARM C    
#>                       (N=69)      (N=73)         (N=58)   
#> ——————————————————————————————————————————————————————————
#> Stratified Analysis                                       
#>   p-value (wald)                  0.0784         0.0066   
#>   Hazard Ratio                     1.44           1.89    
#>   95% CI                       (0.96, 2.15)   (1.19, 2.98)
