Summarize results of ANCOVA. This can be used to analyze multiple endpoints and/or
multiple timepoints within the same response variable .var.
Usage
summarize_ancova(
  lyt,
  vars,
  variables,
  conf_level,
  interaction_y = FALSE,
  interaction_item = NULL,
  var_labels,
  na_str = default_na_str(),
  nested = TRUE,
  ...,
  show_labels = "visible",
  table_names = vars,
  .stats = NULL,
  .formats = NULL,
  .labels = NULL,
  .indent_mods = NULL
)
s_ancova(
  df,
  .var,
  .df_row,
  variables,
  .ref_group,
  .in_ref_col,
  conf_level,
  interaction_y = FALSE,
  interaction_item = NULL
)
a_ancova(
  df,
  .var,
  .df_row,
  variables,
  .ref_group,
  .in_ref_col,
  conf_level,
  interaction_y = FALSE,
  interaction_item = NULL
)Arguments
- lyt
 (
PreDataTableLayouts)
layout that analyses will be added to.- vars
 (
character)
variable names for the primary analysis variable to be iterated over.- variables
 - 
(named
listofstring)
list of additional analysis variables, with expected elements:arm(string)
group variable, for which the covariate adjusted means of multiple groups will be summarized. Specifically, the first level ofarmvariable is taken as the reference group.covariates(character)
a vector that can contain single variable names (such as"X1"), and/or interaction terms indicated by"X1 * X2".
 - conf_level
 (
proportion)
confidence level of the interval.- interaction_y
 (
stringorflag)
a selected item inside of the interaction_item column which will be used to select the specific ANCOVA results. if the interaction is not needed, the default option isFALSE.- interaction_item
 (
stringorNULL)
name of the variable that should have interactions with arm. if the interaction is not needed, the default option isNULL.- var_labels
 (
character)
variable labels.- na_str
 (
string)
string used to replace allNAor empty values in the output.- nested
 (
flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
 additional arguments for the lower level functions.
- show_labels
 (
string)
label visibility: one of "default", "visible" and "hidden".- table_names
 (
character)
this can be customized in the case that the samevarsare analyzed multiple times, to avoid warnings fromrtables.- .stats
 (
character)
statistics to select for the table. Runget_stats("summarize_ancova")to see available statistics for this function.- .formats
 (named
characterorlist)
formats for the statistics. See Details inanalyze_varsfor more information on the"auto"setting.- .labels
 (named
character)
labels for the statistics (without indent).- .indent_mods
 (named
integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
 (
data.frame)
data set containing all analysis variables.- .var
 (
string)
single variable name that is passed byrtableswhen requested by a statistics function.- .df_row
 (
data.frame)
data set that includes all the variables that are called in.varandvariables.- .ref_group
 (
data.frameorvector)
the data corresponding to the reference group.- .in_ref_col
 (
flag)TRUEwhen working with the reference level,FALSEotherwise.
Value
summarize_ancova()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_ancova()to the table layout.
- 
s_ancova()returns a named list of 5 statistics:n: Count of complete sample size for the group.lsmean: Estimated marginal means in the group.lsmean_diff: Difference in estimated marginal means in comparison to the reference group. If working with the reference group, this will be empty.lsmean_diff_ci: Confidence level for difference in estimated marginal means in comparison to the reference group.pval: p-value (not adjusted for multiple comparisons).
 
a_ancova()returns the corresponding list with formattedrtables::CellValue().
Functions
summarize_ancova(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze().s_ancova(): Statistics function that produces a named list of results of the investigated linear model.a_ancova(): Formatted analysis function which is used asafuninsummarize_ancova().
Examples
basic_table() %>%
  split_cols_by("Species", ref_group = "setosa") %>%
  add_colcounts() %>%
  summarize_ancova(
    vars = "Petal.Length",
    variables = list(arm = "Species", covariates = NULL),
    table_names = "unadj",
    conf_level = 0.95, var_labels = "Unadjusted comparison",
    .labels = c(lsmean = "Mean", lsmean_diff = "Difference in Means")
  ) %>%
  summarize_ancova(
    vars = "Petal.Length",
    variables = list(arm = "Species", covariates = c("Sepal.Length", "Sepal.Width")),
    table_names = "adj",
    conf_level = 0.95, var_labels = "Adjusted comparison (covariates: Sepal.Length and Sepal.Width)"
  ) %>%
  build_table(iris)
#>                                                                  setosa    versicolor     virginica  
#>                                                                  (N=50)      (N=50)         (N=50)   
#> —————————————————————————————————————————————————————————————————————————————————————————————————————
#> Unadjusted comparison                                                                                
#>   n                                                                50          50             50     
#>   Mean                                                            1.46        4.26           5.55    
#>   Difference in Means                                                         2.80           4.09    
#>     95% CI                                                                (2.63, 2.97)   (3.92, 4.26)
#>     p-value                                                                 <0.0001        <0.0001   
#> Adjusted comparison (covariates: Sepal.Length and Sepal.Width)                                       
#>   n                                                                50          50             50     
#>   Adjusted Mean                                                   2.02        4.19           5.07    
#>   Difference in Adjusted Means                                                2.17           3.05    
#>     95% CI                                                                (1.96, 2.38)   (2.81, 3.29)
#>     p-value                                                                 <0.0001        <0.0001   
