
Tabulate biomarker effects on binary response by subgroup
Source:R/response_biomarkers_subgroups.R
      response_biomarkers_subgroups.RdTabulate the estimated effects of multiple continuous biomarker variables on a binary response endpoint across population subgroups.
Usage
tabulate_rsp_biomarkers(
  df,
  vars = c("n_tot", "n_rsp", "prop", "or", "ci", "pval"),
  na_str = default_na_str(),
  .indent_mods = 0L
)Arguments
- df
 (
data.frame)
containing all analysis variables, as returned byextract_rsp_biomarkers().- vars
 - 
(
character)
the names of statistics to be reported among:n_tot: Total number of patients per group.n_rsp: Total number of responses per group.prop: Total response proportion per group.or: Odds ratio.ci: Confidence interval of odds ratio.pval: p-value of the effect. Note, the statisticsn_tot,orandciare required.
 - na_str
 (
string)
string used to replace allNAor empty values in the output.- .indent_mods
 (named
integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.
Details
These functions create a layout starting from a data frame which contains the required statistics. The tables are then typically used as input for forest plots.
Note
In contrast to tabulate_rsp_subgroups() this tabulation function does
not start from an input layout lyt. This is because internally the table is
created by combining multiple subtables.
See also
h_tab_rsp_one_biomarker() which is used internally, extract_rsp_biomarkers().
Examples
library(dplyr)
library(forcats)
adrs <- tern_ex_adrs
adrs_labels <- formatters::var_labels(adrs)
adrs_f <- adrs %>%
  filter(PARAMCD == "BESRSPI") %>%
  mutate(rsp = AVALC == "CR")
formatters::var_labels(adrs_f) <- c(adrs_labels, "Response")
df <- extract_rsp_biomarkers(
  variables = list(
    rsp = "rsp",
    biomarkers = c("BMRKR1", "AGE"),
    covariates = "SEX",
    subgroups = "BMRKR2"
  ),
  data = adrs_f
)
# \donttest{
## Table with default columns.
tabulate_rsp_biomarkers(df)
#>                                  Total n   Responders   Response (%)   Odds Ratio      95% CI      p-value (Wald)
#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————
#> Age                                                                                                              
#>   All Patients                     200        164          82.0%          1.00      (0.95, 1.05)       0.8530    
#>   Continuous Level Biomarker 2                                                                                   
#>     LOW                            70          53          75.7%          0.93      (0.85, 1.01)       0.0845    
#>     MEDIUM                         68          58          85.3%          0.99      (0.88, 1.11)       0.8190    
#>     HIGH                           62          53          85.5%          1.06      (0.96, 1.18)       0.2419    
#> Continuous Level Biomarker 1                                                                                     
#>   All Patients                     200        164          82.0%          0.98      (0.88, 1.08)       0.6353    
#>   Continuous Level Biomarker 2                                                                                   
#>     LOW                            70          53          75.7%          1.15      (0.95, 1.40)       0.1584    
#>     MEDIUM                         68          58          85.3%          0.88      (0.73, 1.06)       0.1700    
#>     HIGH                           62          53          85.5%          0.88      (0.72, 1.08)       0.2104    
## Table with a manually chosen set of columns: leave out "pval", reorder.
tab <- tabulate_rsp_biomarkers(
  df = df,
  vars = c("n_rsp", "ci", "n_tot", "prop", "or")
)
## Finally produce the forest plot.
g_forest(tab, xlim = c(0.7, 1.4))
# }