Arguments
- df
(
data.frame
)
data set containing all analysis variables.- x_stats
(named
list
)
a named list of statistics, typically the results ofs_summary()
.- stat
(
string
)
statistic to return the value/NA level of according to the imputation rule applied.- imp_rule
(
string
)
imputation rule setting. Set to"1/3"
to implement 1/3 imputation rule or"1/2"
to implement 1/2 imputation rule.- post
(
flag
)
whether the data corresponds to a post-dose time-point (defaults toFALSE
). This parameter is only used whenimp_rule
is set to"1/3"
.- avalcat_var
(
string
)
name of variable that indicates whether a row indf
corresponds to an analysis value in category"BLQ"
,"LTR"
,"<PCLLOQ"
, or none of the above (defaults to"AVALCAT1"
). Variableavalcat_var
must be present indf
.
Value
A list
containing statistic value (val
) and NA level (na_str
) that should be displayed
according to the specified imputation rule.
See also
analyze_vars_in_cols()
where this function can be implemented by setting the imp_rule
argument.
Examples
set.seed(1)
df <- data.frame(
AVAL = runif(50, 0, 1),
AVALCAT1 = sample(c(1, "BLQ"), 50, replace = TRUE)
)
x_stats <- s_summary(df$AVAL)
imputation_rule(df, x_stats, "max", "1/3")
#> $val
#> max
#> 0.9919061
#>
#> $na_str
#> [1] "ND"
#>
imputation_rule(df, x_stats, "geom_mean", "1/3")
#> $val
#> [1] NA
#>
#> $na_str
#> [1] "NE"
#>
imputation_rule(df, x_stats, "mean", "1/2")
#> $val
#> [1] NA
#>
#> $na_str
#> [1] "ND"
#>