Usage
compare_vars(
  lyt,
  vars,
  var_labels = vars,
  na_str = default_na_str(),
  nested = TRUE,
  ...,
  na.rm = TRUE,
  show_labels = "default",
  table_names = vars,
  section_div = NA_character_,
  .stats = c("n", "mean_sd", "count_fraction", "pval"),
  .formats = NULL,
  .labels = NULL,
  .indent_mods = NULL
)
s_compare(x, .ref_group, .in_ref_col, ...)
# S3 method for numeric
s_compare(x, .ref_group, .in_ref_col, ...)
# S3 method for factor
s_compare(x, .ref_group, .in_ref_col, denom = "n", na.rm = TRUE, ...)
# S3 method for character
s_compare(
  x,
  .ref_group,
  .in_ref_col,
  denom = "n",
  na.rm = TRUE,
  .var,
  verbose = TRUE,
  ...
)
# S3 method for logical
s_compare(x, .ref_group, .in_ref_col, na.rm = TRUE, denom = "n", ...)Arguments
- lyt
 (
PreDataTableLayouts)
layout that analyses will be added to.- vars
 (
character)
variable names for the primary analysis variable to be iterated over.- var_labels
 (
character)
variable labels.- na_str
 (
string)
string used to replace allNAor empty values in the output.- nested
 (
flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
 arguments passed to
s_compare().- na.rm
 (
flag)
whetherNAvalues should be removed fromxprior to analysis.- show_labels
 (
string)
label visibility: one of "default", "visible" and "hidden".- table_names
 (
character)
this can be customized in the case that the samevarsare analyzed multiple times, to avoid warnings fromrtables.- section_div
 (
string)
string which should be repeated as a section divider after each group defined by this split instruction, orNA_character_(the default) for no section divider.- .stats
 (
character)
statistics to select for the table. Runget_stats("analyze_vars_numeric")to see statistics available for numeric variables, andget_stats("analyze_vars_counts")for statistics available for non-numeric variables.- .formats
 (named
characterorlist)
formats for the statistics. See Details inanalyze_varsfor more information on the"auto"setting.- .labels
 (named
character)
labels for the statistics (without indent).- .indent_mods
 (named
integer)
indent modifiers for the labels. Each element of the vector should be a name-value pair with name corresponding to a statistic specified in.statsand value the indentation for that statistic's row label.- x
 (
numeric)
vector of numbers we want to analyze.- .ref_group
 (
data.frameorvector)
the data corresponding to the reference group.- .in_ref_col
 (
flag)TRUEwhen working with the reference level,FALSEotherwise.- denom
 (
string)
choice of denominator for factor proportions, can only ben(number of values in this row and column intersection).- .var
 (
string)
single variable name that is passed byrtableswhen requested by a statistics function.- verbose
 (
flag)
whether warnings and messages should be printed. Mainly used to print out information about factor casting. Defaults toTRUE.
Value
compare_vars()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_compare()to the table layout.
s_compare()returns output ofs_summary()and comparisons versus the reference group in the form of p-values.
Functions
compare_vars(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze().s_compare(): S3 generic function to produce a comparison summary.s_compare(numeric): Method fornumericclass. This uses the standard t-test to calculate the p-value.s_compare(factor): Method forfactorclass. This uses the chi-squared test to calculate the p-value.s_compare(character): Method forcharacterclass. This makes an automatic conversion tofactor(with a warning) and then forwards to the method for factors.s_compare(logical): Method forlogicalclass. A chi-squared test is used. If missing values are not removed, then they are counted asFALSE.
Note
For factor variables,
denomfor factor proportions can only bensince the purpose is to compare proportions between columns, therefore a row-based proportion would not make sense. Proportion based onN_colwould be difficult since we use counts for the chi-squared test statistic, therefore missing values should be accounted for as explicit factor levels.If factor variables contain
NA, theseNAvalues are excluded by default. To includeNAvalues setna.rm = FALSEand missing values will be displayed as anNAlevel. Alternatively, an explicit factor level can be defined forNAvalues during pre-processing viadf_explicit_na()- the defaultna_level("<Missing>") will also be excluded whenna.rmis set toTRUE.For character variables, automatic conversion to factor does not guarantee that the table will be generated correctly. In particular for sparse tables this very likely can fail. Therefore it is always better to manually convert character variables to factors during pre-processing.
For
compare_vars(), the column split must define a reference group viaref_groupso that the comparison is well defined.
See also
s_summary() which is used internally to compute a summary within s_compare(), and a_summary()
which is used (with compare = TRUE) as the analysis function for compare_vars().
Examples
# `compare_vars()` in `rtables` pipelines
## Default output within a `rtables` pipeline.
lyt <- basic_table() %>%
  split_cols_by("ARMCD", ref_group = "ARM B") %>%
  compare_vars(c("AGE", "SEX"))
build_table(lyt, tern_ex_adsl)
#>                                  ARM A        ARM B        ARM C   
#> ———————————————————————————————————————————————————————————————————
#> AGE                                                                
#>   n                                69           73           58    
#>   Mean (SD)                    34.1 (6.8)   35.8 (7.1)   36.1 (7.4)
#>   p-value (t-test)               0.1446                    0.8212  
#> SEX                                                                
#>   n                                69           73           58    
#>   F                            38 (55.1%)   40 (54.8%)   32 (55.2%)
#>   M                            31 (44.9%)   33 (45.2%)   26 (44.8%)
#>   p-value (chi-squared test)     1.0000                    1.0000  
## Select and format statistics output.
lyt <- basic_table() %>%
  split_cols_by("ARMCD", ref_group = "ARM C") %>%
  compare_vars(
    vars = "AGE",
    .stats = c("mean_sd", "pval"),
    .formats = c(mean_sd = "xx.x, xx.x"),
    .labels = c(mean_sd = "Mean, SD")
  )
build_table(lyt, df = tern_ex_adsl)
#>                      ARM A       ARM B       ARM C  
#> ————————————————————————————————————————————————————
#> Mean, SD           34.1, 6.8   35.8, 7.1   36.1, 7.4
#> p-value (t-test)    0.1176      0.8212              
# `s_compare.numeric`
## Usual case where both this and the reference group vector have more than 1 value.
s_compare(rnorm(10, 5, 1), .ref_group = rnorm(5, -5, 1), .in_ref_col = FALSE)
#> $n
#>  n 
#> 10 
#> 
#> $sum
#>      sum 
#> 51.27191 
#> 
#> $mean
#>     mean 
#> 5.127191 
#> 
#> $sd
#>       sd 
#> 1.226119 
#> 
#> $se
#>       se 
#> 0.387733 
#> 
#> $mean_sd
#>     mean       sd 
#> 5.127191 1.226119 
#> 
#> $mean_se
#>     mean       se 
#> 5.127191 0.387733 
#> 
#> $mean_ci
#> mean_ci_lwr mean_ci_upr 
#>    4.250078    6.004304 
#> attr(,"label")
#> [1] "Mean 95% CI"
#> 
#> $mean_sei
#> mean_sei_lwr mean_sei_upr 
#>     4.739458     5.514924 
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#> 
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr 
#>     3.901071     6.353310 
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#> 
#> $mean_pval
#>      p_value 
#> 3.353908e-07 
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#> 
#> $median
#>   median 
#> 5.024369 
#> 
#> $mad
#>           mad 
#> -4.440892e-16 
#> 
#> $median_ci
#> median_ci_lwr median_ci_upr 
#>      4.638779      5.862086 
#> attr(,"conf_level")
#> [1] 0.9785156
#> attr(,"label")
#> [1] "Median 95% CI"
#> 
#> $quantiles
#> quantile_0.25 quantile_0.75 
#>      4.756763      5.549828 
#> attr(,"label")
#> [1] "25% and 75%-ile"
#> 
#> $iqr
#>       iqr 
#> 0.7930643 
#> 
#> $range
#>      min      max 
#> 2.725885 7.682557 
#> 
#> $min
#>      min 
#> 2.725885 
#> 
#> $max
#>      max 
#> 7.682557 
#> 
#> $median_range
#>   median      min      max 
#> 5.024369 2.725885 7.682557 
#> attr(,"label")
#> [1] "Median (Min - Max)"
#> 
#> $cv
#>       cv 
#> 23.91406 
#> 
#> $geom_mean
#> geom_mean 
#>  4.985435 
#> 
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr 
#>    4.144463    5.997052 
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#> 
#> $geom_cv
#>  geom_cv 
#> 26.26258 
#> 
#> $pval
#> [1] 2.25779e-08
#> 
## If one group has not more than 1 value, then p-value is not calculated.
s_compare(rnorm(10, 5, 1), .ref_group = 1, .in_ref_col = FALSE)
#> $n
#>  n 
#> 10 
#> 
#> $sum
#>      sum 
#> 50.71578 
#> 
#> $mean
#>     mean 
#> 5.071578 
#> 
#> $sd
#>       sd 
#> 1.105832 
#> 
#> $se
#>        se 
#> 0.3496948 
#> 
#> $mean_sd
#>     mean       sd 
#> 5.071578 1.105832 
#> 
#> $mean_se
#>      mean        se 
#> 5.0715780 0.3496948 
#> 
#> $mean_ci
#> mean_ci_lwr mean_ci_upr 
#>    4.280513    5.862643 
#> attr(,"label")
#> [1] "Mean 95% CI"
#> 
#> $mean_sei
#> mean_sei_lwr mean_sei_upr 
#>     4.721883     5.421273 
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#> 
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr 
#>     3.965746     6.177410 
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#> 
#> $mean_pval
#>      p_value 
#> 1.511204e-07 
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#> 
#> $median
#>   median 
#> 5.260423 
#> 
#> $mad
#> mad 
#>   0 
#> 
#> $median_ci
#> median_ci_lwr median_ci_upr 
#>      3.529264      6.318293 
#> attr(,"conf_level")
#> [1] 0.9785156
#> attr(,"label")
#> [1] "Median 95% CI"
#> 
#> $quantiles
#> quantile_0.25 quantile_0.75 
#>      4.024149      6.065057 
#> attr(,"label")
#> [1] "25% and 75%-ile"
#> 
#> $iqr
#>      iqr 
#> 2.040908 
#> 
#> $range
#>      min      max 
#> 3.300549 6.337320 
#> 
#> $min
#>      min 
#> 3.300549 
#> 
#> $max
#>     max 
#> 6.33732 
#> 
#> $median_range
#>   median      min      max 
#> 5.260423 3.300549 6.337320 
#> attr(,"label")
#> [1] "Median (Min - Max)"
#> 
#> $cv
#>      cv 
#> 21.8045 
#> 
#> $geom_mean
#> geom_mean 
#>  4.952266 
#> 
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr 
#>    4.181833    5.864639 
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#> 
#> $geom_cv
#>  geom_cv 
#> 23.97201 
#> 
#> $pval
#> character(0)
#> 
## Empty numeric does not fail, it returns NA-filled items and no p-value.
s_compare(numeric(), .ref_group = numeric(), .in_ref_col = FALSE)
#> $n
#> n 
#> 0 
#> 
#> $sum
#> sum 
#>  NA 
#> 
#> $mean
#> mean 
#>   NA 
#> 
#> $sd
#> sd 
#> NA 
#> 
#> $se
#> se 
#> NA 
#> 
#> $mean_sd
#> mean   sd 
#>   NA   NA 
#> 
#> $mean_se
#> mean   se 
#>   NA   NA 
#> 
#> $mean_ci
#> mean_ci_lwr mean_ci_upr 
#>          NA          NA 
#> attr(,"label")
#> [1] "Mean 95% CI"
#> 
#> $mean_sei
#> mean_sei_lwr mean_sei_upr 
#>           NA           NA 
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#> 
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr 
#>           NA           NA 
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#> 
#> $mean_pval
#> p_value 
#>      NA 
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#> 
#> $median
#> median 
#>     NA 
#> 
#> $mad
#> mad 
#>  NA 
#> 
#> $median_ci
#> median_ci_lwr median_ci_upr 
#>            NA            NA 
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#> 
#> $quantiles
#> quantile_0.25 quantile_0.75 
#>            NA            NA 
#> attr(,"label")
#> [1] "25% and 75%-ile"
#> 
#> $iqr
#> iqr 
#>  NA 
#> 
#> $range
#> min max 
#>  NA  NA 
#> 
#> $min
#> min 
#>  NA 
#> 
#> $max
#> max 
#>  NA 
#> 
#> $median_range
#> median    min    max 
#>     NA     NA     NA 
#> attr(,"label")
#> [1] "Median (Min - Max)"
#> 
#> $cv
#> cv 
#> NA 
#> 
#> $geom_mean
#> geom_mean 
#>       NaN 
#> 
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr 
#>          NA          NA 
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#> 
#> $geom_cv
#> geom_cv 
#>      NA 
#> 
#> $pval
#> character(0)
#> 
# `s_compare.factor`
## Basic usage:
x <- factor(c("a", "a", "b", "c", "a"))
y <- factor(c("a", "b", "c"))
s_compare(x = x, .ref_group = y, .in_ref_col = FALSE)
#> $n
#> [1] 5
#> 
#> $count
#> $count$a
#> [1] 3
#> 
#> $count$b
#> [1] 1
#> 
#> $count$c
#> [1] 1
#> 
#> 
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#> 
#> $count_fraction$b
#> [1] 1.0 0.2
#> 
#> $count_fraction$c
#> [1] 1.0 0.2
#> 
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.7659283
#> 
## Management of NA values.
x <- explicit_na(factor(c("a", "a", "b", "c", "a", NA, NA)))
y <- explicit_na(factor(c("a", "b", "c", NA)))
s_compare(x = x, .ref_group = y, .in_ref_col = FALSE, na.rm = TRUE)
#> $n
#> [1] 5
#> 
#> $count
#> $count$a
#> [1] 3
#> 
#> $count$b
#> [1] 1
#> 
#> $count$c
#> [1] 1
#> 
#> 
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#> 
#> $count_fraction$b
#> [1] 1.0 0.2
#> 
#> $count_fraction$c
#> [1] 1.0 0.2
#> 
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.7659283
#> 
s_compare(x = x, .ref_group = y, .in_ref_col = FALSE, na.rm = FALSE)
#> $n
#> [1] 7
#> 
#> $count
#> $count$a
#> [1] 3
#> 
#> $count$b
#> [1] 1
#> 
#> $count$c
#> [1] 1
#> 
#> $count$`<Missing>`
#> [1] 2
#> 
#> 
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0000000 0.4285714
#> 
#> $count_fraction$b
#> [1] 1.0000000 0.1428571
#> 
#> $count_fraction$c
#> [1] 1.0000000 0.1428571
#> 
#> $count_fraction$`<Missing>`
#> [1] 2.0000000 0.2857143
#> 
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.9063036
#> 
# `s_compare.character`
## Basic usage:
x <- c("a", "a", "b", "c", "a")
y <- c("a", "b", "c")
s_compare(x, .ref_group = y, .in_ref_col = FALSE, .var = "x", verbose = FALSE)
#> $n
#> [1] 5
#> 
#> $count
#> $count$a
#> [1] 3
#> 
#> $count$b
#> [1] 1
#> 
#> $count$c
#> [1] 1
#> 
#> 
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#> 
#> $count_fraction$b
#> [1] 1.0 0.2
#> 
#> $count_fraction$c
#> [1] 1.0 0.2
#> 
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.7659283
#> 
## Note that missing values handling can make a large difference:
x <- c("a", "a", "b", "c", "a", NA)
y <- c("a", "b", "c", rep(NA, 20))
s_compare(x,
  .ref_group = y, .in_ref_col = FALSE,
  .var = "x", verbose = FALSE
)
#> $n
#> [1] 5
#> 
#> $count
#> $count$a
#> [1] 3
#> 
#> $count$b
#> [1] 1
#> 
#> $count$c
#> [1] 1
#> 
#> 
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#> 
#> $count_fraction$b
#> [1] 1.0 0.2
#> 
#> $count_fraction$c
#> [1] 1.0 0.2
#> 
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.7659283
#> 
s_compare(x,
  .ref_group = y, .in_ref_col = FALSE, .var = "x",
  na.rm = FALSE, verbose = FALSE
)
#> $n
#> [1] 6
#> 
#> $count
#> $count$a
#> [1] 3
#> 
#> $count$b
#> [1] 1
#> 
#> $count$c
#> [1] 1
#> 
#> $count$`<Missing>`
#> [1] 1
#> 
#> 
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.5
#> 
#> $count_fraction$b
#> [1] 1.0000000 0.1666667
#> 
#> $count_fraction$c
#> [1] 1.0000000 0.1666667
#> 
#> $count_fraction$`<Missing>`
#> [1] 1.0000000 0.1666667
#> 
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.005768471
#> 
# `s_compare.logical`
## Basic usage:
x <- c(TRUE, FALSE, TRUE, TRUE)
y <- c(FALSE, FALSE, TRUE)
s_compare(x, .ref_group = y, .in_ref_col = FALSE)
#> $n
#> [1] 4
#> 
#> $count
#> [1] 3
#> 
#> $count_fraction
#> [1] 3.00 0.75
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.2702894
#> 
## Management of NA values.
x <- c(NA, TRUE, FALSE)
y <- c(NA, NA, NA, NA, FALSE)
s_compare(x, .ref_group = y, .in_ref_col = FALSE, na.rm = TRUE)
#> $n
#> [1] 2
#> 
#> $count
#> [1] 1
#> 
#> $count_fraction
#> [1] 1.0 0.5
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.3864762
#> 
s_compare(x, .ref_group = y, .in_ref_col = FALSE, na.rm = FALSE)
#> $n
#> [1] 3
#> 
#> $count
#> [1] 1
#> 
#> $count_fraction
#> [1] 1.0000000 0.3333333
#> 
#> $n_blq
#> [1] 0
#> 
#> $pval_counts
#> [1] 0.1675463
#> 
