Usage
s_num_patients(
x,
labelstr,
.N_col,
count_by = NULL,
unique_count_suffix = TRUE
)
s_num_patients_content(
df,
labelstr = "",
.N_col,
.var,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE
)
summarize_num_patients(
lyt,
var,
na_str = NA_character_,
.stats = NULL,
.formats = NULL,
.labels = c(unique = "Number of patients with at least one event", nonunique =
"Number of events"),
indent_mod = lifecycle::deprecated(),
.indent_mods = 0L,
riskdiff = FALSE,
...
)
analyze_num_patients(
lyt,
vars,
na_str = NA_character_,
nested = TRUE,
.stats = NULL,
.formats = NULL,
.labels = c(unique = "Number of patients with at least one event", nonunique =
"Number of events"),
show_labels = c("default", "visible", "hidden"),
indent_mod = lifecycle::deprecated(),
.indent_mods = 0L,
riskdiff = FALSE,
...
)
Arguments
- x
(
character
orfactor
)
vector of patient IDs.- labelstr
(
character
)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). Seertables::summarize_row_groups()
for more information.- .N_col
(
integer
)
column-wise N (column count) for the full column being analyzed that is typically passed byrtables
.- count_by
(
character
orfactor
)
optional vector to be combined withx
when countingnonunique
records.- unique_count_suffix
(
logical
)
should"(n)"
suffix be added tounique_count
labels. Defaults toTRUE
.- df
(
data.frame
)
data set containing all analysis variables.- .var, var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- required
(
character
orNULL
)
optional name of a variable that is required to be non-missing.- lyt
(
layout
)
input layout where analyses will be added to.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .labels
(named
character
)
labels for the statistics (without indent).- indent_mod
- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- riskdiff
(
flag
)
whether a risk difference column is present. When set toTRUE
,add_riskdiff()
must be used assplit_fun
in the prior column split of the table layout, specifying which columns should be compared. Seestat_propdiff_ci()
for details on risk difference calculation.- ...
additional arguments for the lower level functions.
- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".
Value
-
s_num_patients()
returns a namedlist
of 3 statistics:unique
: Vector of counts and percentages.nonunique
: Vector of counts.unique_count
: Counts.
s_num_patients_content()
returns the same values ass_num_patients()
.
summarize_num_patients()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_num_patients_content()
to the table layout.
analyze_num_patients()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_num_patients_content()
to the table layout.
Details
In general, functions that starts with analyze*
are expected to
work like rtables::analyze()
, while functions that starts with summarize*
are based upon rtables::summarize_row_groups()
. The latter provides a
value for each dividing split in the row and column space, but, being it
bound to the fundamental splits, it is repeated by design in every page
when pagination is involved.
Functions
s_num_patients()
: Statistics function which counts the number of unique patients, the corresponding percentage taken with respect to the total number of patients, and the number of non-unique patients.s_num_patients_content()
: Statistics function which counts the number of unique patients in a column (variable), the corresponding percentage taken with respect to the total number of patients, and the number of non-unique patients in the column.summarize_num_patients()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::summarize_row_groups()
.analyze_num_patients()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.
Examples
# Use the statistics function to count number of unique and nonunique patients.
s_num_patients(x = as.character(c(1, 1, 1, 2, 4, NA)), labelstr = "", .N_col = 6L)
#> $unique
#> [1] 3.0 0.5
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 5
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
s_num_patients(
x = as.character(c(1, 1, 1, 2, 4, NA)),
labelstr = "",
.N_col = 6L,
count_by = as.character(c(1, 1, 2, 1, 1, 1))
)
#> $unique
#> [1] 3.0 0.5
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 4
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
# Count number of unique and non-unique patients.
df <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA)),
EVENT = as.character(c(10, 15, 10, 17, 8))
)
s_num_patients_content(df, .N_col = 5, .var = "USUBJID")
#> $unique
#> [1] 3.0 0.6
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 4
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
df_by_event <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA)),
EVENT = as.character(c(10, 15, 10, 17, 8))
)
s_num_patients_content(df_by_event, .N_col = 5, .var = "USUBJID")
#> $unique
#> [1] 3.0 0.6
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 4
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
s_num_patients_content(df_by_event, .N_col = 5, .var = "USUBJID", count_by = "EVENT")
#> $unique
#> [1] 3.0 0.6
#> attr(,"label")
#> [1] ""
#>
#> $nonunique
#> [1] 3
#> attr(,"label")
#> [1] ""
#>
#> $unique_count
#> [1] 3
#> attr(,"label")
#> [1] "(n)"
#>
df_tmp <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA, 6, 6, 8, 9)),
ARM = c("A", "A", "A", "A", "A", "B", "B", "B", "B"),
AGE = c(10, 15, 10, 17, 8, 11, 11, 19, 17)
)
tbl <- basic_table() %>%
split_cols_by("ARM") %>%
add_colcounts() %>%
analyze_num_patients("USUBJID", .stats = c("unique")) %>%
build_table(df_tmp)
tbl
#> A B
#> (N=5) (N=4)
#> ——————————————————————————————————————————————————————————————————
#> Number of patients with at least one event 3 (60.0%) 3 (75.0%)