Prepares Survival Data Estimates for Multiple Biomarkers in a Single Data Frame
Source:R/survival_biomarkers_subgroups.R
extract_survival_biomarkers.Rd
Prepares estimates for number of events, patients and median survival times, as well as hazard ratio estimates,
confidence intervals and p-values, for multiple biomarkers across population subgroups in a single data frame.
variables
corresponds to the names of variables found in data
, passed as a named list
and requires elements
tte
, is_event
, biomarkers
(vector of continuous biomarker variables), and optionally subgroups
and strat
.
groups_lists
optionally specifies groupings for subgroups
variables.
Usage
extract_survival_biomarkers(
variables,
data,
groups_lists = list(),
control = control_coxreg(),
label_all = "All Patients"
)
Arguments
- variables
(named
list
ofstring
)
list of additional analysis variables.- data
(
data.frame
)
the dataset containing the variables to summarize.- groups_lists
(named
list
oflist
)
optionally contains for eachsubgroups
variable a list, which specifies the new group levels via the names and the levels that belong to it in the character vectors that are elements of the list.- control
(
list
)
a list of parameters as returned by the helper functioncontrol_coxreg()
.- label_all
(
string
)
label for the total population analysis.
Value
A data.frame
with columns biomarker
, biomarker_label
, n_tot
, n_tot_events
,
median
, hr
, lcl
, ucl
, conf_level
, pval
, pval_label
, subgroup
, var
,
var_label
, and row_type
.
See also
h_coxreg_mult_cont_df()
which is used internally, tabulate_survival_biomarkers()
.
Examples
# Typical analysis of two continuous biomarkers `BMRKR1` and `AGE`,
# in multiple regression models containing one covariate `RACE`,
# as well as one stratification variable `STRATA1`. The subgroups
# are defined by the levels of `BMRKR2`.
library(dplyr)
adtte <- tern_ex_adtte
adtte_labels <- formatters::var_labels(adtte)
adtte_f <- adtte %>%
filter(PARAMCD == "OS") %>%
mutate(
AVALU = as.character(AVALU),
is_event = CNSR == 0
)
labels <- c("AVALU" = adtte_labels[["AVALU"]], "is_event" = "Event Flag")
formatters::var_labels(adtte_f)[names(labels)] <- labels
df <- extract_survival_biomarkers(
variables = list(
tte = "AVAL",
is_event = "is_event",
biomarkers = c("BMRKR1", "AGE"),
strata = "STRATA1",
covariates = "SEX",
subgroups = "BMRKR2"
),
data = adtte_f
)
df
#> biomarker biomarker_label n_tot n_tot_events median hr
#> 1 BMRKR1 Continuous Level Biomarker 1 200 141 753.5176 1.0010939
#> 2 AGE Age 200 141 753.5176 1.0106406
#> 3 BMRKR1 Continuous Level Biomarker 1 70 52 735.4722 0.9905065
#> 4 AGE Age 70 52 735.4722 1.0106279
#> 5 BMRKR1 Continuous Level Biomarker 1 68 42 858.9952 0.9623210
#> 6 AGE Age 68 42 858.9952 1.0360765
#> 7 BMRKR1 Continuous Level Biomarker 1 62 47 727.8043 1.0770946
#> 8 AGE Age 62 47 727.8043 1.0009890
#> lcl ucl conf_level pval pval_label subgroup var
#> 1 0.9538978 1.050625 0.95 0.9646086 p-value (Wald) All Patients ALL
#> 2 0.9871004 1.034742 0.95 0.3787395 p-value (Wald) All Patients ALL
#> 3 0.9142220 1.073156 0.95 0.8155443 p-value (Wald) LOW BMRKR2
#> 4 0.9621192 1.061582 0.95 0.6735773 p-value (Wald) LOW BMRKR2
#> 5 0.8708694 1.063376 0.95 0.4509368 p-value (Wald) MEDIUM BMRKR2
#> 6 0.9727439 1.103532 0.95 0.2707796 p-value (Wald) MEDIUM BMRKR2
#> 7 0.9756250 1.189118 0.95 0.1412524 p-value (Wald) HIGH BMRKR2
#> 8 0.9678535 1.035259 0.95 0.9541048 p-value (Wald) HIGH BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Continuous Level Biomarker 2 analysis
#> 4 Continuous Level Biomarker 2 analysis
#> 5 Continuous Level Biomarker 2 analysis
#> 6 Continuous Level Biomarker 2 analysis
#> 7 Continuous Level Biomarker 2 analysis
#> 8 Continuous Level Biomarker 2 analysis
# Here we group the levels of `BMRKR2` manually.
df_grouped <- extract_survival_biomarkers(
variables = list(
tte = "AVAL",
is_event = "is_event",
biomarkers = c("BMRKR1", "AGE"),
strata = "STRATA1",
covariates = "SEX",
subgroups = "BMRKR2"
),
data = adtte_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
df_grouped
#> biomarker biomarker_label n_tot n_tot_events median hr
#> 1 BMRKR1 Continuous Level Biomarker 1 200 141 753.5176 1.0010939
#> 2 AGE Age 200 141 753.5176 1.0106406
#> 3 BMRKR1 Continuous Level Biomarker 1 70 52 735.4722 0.9905065
#> 4 AGE Age 70 52 735.4722 1.0106279
#> 5 BMRKR1 Continuous Level Biomarker 1 138 94 777.8929 0.9801709
#> 6 AGE Age 138 94 777.8929 1.0236283
#> 7 BMRKR1 Continuous Level Biomarker 1 200 141 753.5176 1.0010939
#> 8 AGE Age 200 141 753.5176 1.0106406
#> lcl ucl conf_level pval pval_label subgroup var
#> 1 0.9538978 1.050625 0.95 0.9646086 p-value (Wald) All Patients ALL
#> 2 0.9871004 1.034742 0.95 0.3787395 p-value (Wald) All Patients ALL
#> 3 0.9142220 1.073156 0.95 0.8155443 p-value (Wald) low BMRKR2
#> 4 0.9621192 1.061582 0.95 0.6735773 p-value (Wald) low BMRKR2
#> 5 0.9235465 1.040267 0.95 0.5094582 p-value (Wald) low/medium BMRKR2
#> 6 0.9859367 1.062761 0.95 0.2224475 p-value (Wald) low/medium BMRKR2
#> 7 0.9538978 1.050625 0.95 0.9646086 p-value (Wald) low/medium/high BMRKR2
#> 8 0.9871004 1.034742 0.95 0.3787395 p-value (Wald) low/medium/high BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Continuous Level Biomarker 2 analysis
#> 4 Continuous Level Biomarker 2 analysis
#> 5 Continuous Level Biomarker 2 analysis
#> 6 Continuous Level Biomarker 2 analysis
#> 7 Continuous Level Biomarker 2 analysis
#> 8 Continuous Level Biomarker 2 analysis