Additional assertion functions which can be used together with the checkmate
package.
Usage
assert_list_of_variables(x, .var.name = checkmate::vname(x), add = NULL)
assert_df_with_variables(
df,
variables,
na_level = NULL,
.var.name = checkmate::vname(df),
add = NULL
)
assert_valid_factor(
x,
min.levels = 1,
max.levels = NULL,
null.ok = TRUE,
any.missing = TRUE,
n.levels = NULL,
len = NULL,
.var.name = checkmate::vname(x),
add = NULL
)
assert_df_with_factors(
df,
variables,
min.levels = 1,
max.levels = NULL,
any.missing = TRUE,
na_level = NULL,
.var.name = checkmate::vname(df),
add = NULL
)
assert_proportion_value(x, include_boundaries = FALSE)
Arguments
- x
(
any
)
object to test.- .var.name
[
character(1)
]
Name of the checked object to print in assertions. Defaults to the heuristic implemented invname
.- add
[
AssertCollection
]
Collection to store assertion messages. SeeAssertCollection
.- df
(
data.frame
)
data set to test.- variables
(named
list
ofcharacter
)
list of variables to test.- na_level
(
character
)
the string you have been using to represent NA or missing data. ForNA
values please consider using directlyis.na()
or similar approaches.- min.levels
[
integer(1)
]
Minimum number of factor levels. Default isNULL
(no check).- max.levels
[
integer(1)
]
Maximum number of factor levels. Default isNULL
(no check).- null.ok
[
logical(1)
]
If set toTRUE
,x
may also beNULL
. In this case only a type check ofx
is performed, all additional checks are disabled.- any.missing
[
logical(1)
]
Are vectors with missing values allowed? Default isTRUE
.- n.levels
[
integer(1)
]
Exact number of factor levels. Default isNULL
(no check).- len
[
integer(1)
]
Exact expected length ofx
.- include_boundaries
(
logical
)
whether to include boundaries when testing for proportions.
Functions
assert_list_of_variables()
: Checks whetherx
is a valid list of variable names.NULL
elements of the listx
are dropped withFilter(Negate(is.null), x)
.assert_df_with_variables()
: Check whetherdf
is a data frame with the analysisvariables
. Please notice how this produces an error when not all variables are present in the data.frame while the opposite is not required.assert_valid_factor()
: Check whetherx
is a valid factor (i.e. has levels and no empty string levels). Note thatNULL
andNA
elements are allowed.assert_df_with_factors()
: Check whetherdf
is a data frame where the analysisvariables
are all factors. Note that the creation ofNA
by direct call offactor()
will trimNA
levels out of the vector list itself.assert_proportion_value()
: Check whetherx
is a proportion: number between 0 and 1.