Layout-creating function which can be used for creating column-wise summary tables.
This function sets the analysis methods as column labels and is a wrapper for
rtables::analyze_colvars()
. It was designed principally for PK tables.
Usage
analyze_vars_in_cols(
lyt,
vars,
...,
.stats = c("n", "mean", "sd", "se", "cv", "geom_cv"),
.labels = c(n = "n", mean = "Mean", sd = "SD", se = "SE", cv = "CV (%)", geom_cv =
"CV % Geometric Mean"),
row_labels = NULL,
do_summarize_row_groups = FALSE,
split_col_vars = TRUE,
imp_rule = NULL,
avalcat_var = "AVALCAT1",
cache = FALSE,
.indent_mods = NULL,
nested = TRUE,
na_level = NULL,
.formats = NULL,
.aligns = NULL
)
Arguments
- lyt
(
layout
)
input layout where analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- ...
additional arguments for the lower level functions.
- .stats
(
character
)
statistics to select for the table.- .labels
(named
character
)
labels for the statistics (without indent).- row_labels
(
character
)
as this function works in columns space, usual.labels
character vector applies on the column space. You can change the row labels by defining this parameter to a named character vector with names corresponding to the split values. It defaults toNULL
and if it contains only onestring
, it will duplicate that as a row label.- do_summarize_row_groups
(
flag
)
defaults toFALSE
and applies the analysis to the current label rows. This is a wrapper ofrtables::summarize_row_groups()
and it can acceptlabelstr
to define row labels. This behavior is not supported as we never need to overload row labels.- split_col_vars
(
flag
)
defaults toTRUE
and puts the analysis results onto the columns. This option allows you to add multiple instances of this functions, also in a nested fashion, without adding more splits. This split must happen only one time on a single layout.- imp_rule
(
character
)
imputation rule setting. Defaults toNULL
for no imputation rule. Can also be"1/3"
to implement 1/3 imputation rule or"1/2"
to implement 1/2 imputation rule. In order to use an imputation rule, theavalcat_var
argument must be specified. Seeimputation_rule()
for more details on imputation.- avalcat_var
(
character
)
ifimp_rule
is notNULL
, name of variable that indicates whether a row in the data corresponds to an analysis value in category"BLQ"
,"LTR"
,"<PCLLOQ"
, or none of the above (defaults to"AVALCAT1"
). Variable must be present in the data and should match the variable used to calculate then_blq
statistic (if included in.stats
).- cache
(
flag
)
whether to store computed values in a temporary caching environment. This will speed up calculations in large tables, but should be set toFALSE
if the samertable
layout is used for multiple tables with different data. Defaults toFALSE
.- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- na_level
(
string
)
string used to replace allNA
or empty values in the output.- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .aligns
(
character
)
alignment for table contents (not including labels). WhenNULL
,"center"
is applied. Seeformatters::list_valid_aligns()
for a list of all currently supported alignments.
Value
A layout object suitable for passing to further layouting functions, or to rtables::build_table()
.
Adding this function to an rtable
layout will summarize the given variables, arrange the output
in columns, and add it to the table layout.
Note
This is an experimental implementation of rtables::summarize_row_groups()
and
rtables::analyze_colvars()
that may be subjected to changes as rtables
extends its
support to more complex analysis pipelines on the column space. For the same reasons,
we encourage to read the examples carefully and file issues for cases that differ from
them.
Here labelstr
behaves differently than usual. If it is not defined (default as NULL
),
row labels are assigned automatically to the split values in case of rtables::analyze_colvars
(do_summarize_row_groups = FALSE
, the default), and to the group label for
do_summarize_row_groups = TRUE
.
Examples
library(dplyr)
# Data preparation
adpp <- tern_ex_adpp %>% h_pkparam_sort()
lyt <- basic_table() %>%
split_rows_by(var = "STRATA1", label_pos = "topleft") %>%
split_rows_by(
var = "SEX",
label_pos = "topleft",
child_label = "hidden"
) %>% # Removes duplicated labels
analyze_vars_in_cols(vars = "AGE")
result <- build_table(lyt = lyt, df = adpp)
result
#> STRATA1
#> SEX n Mean SD SE CV (%) CV % Geometric Mean
#> ————————————————————————————————————————————————————————————————
#> A
#> F 81 38.8 5.4 0.6 13.8 14.3
#> M 81 38.9 5.9 0.7 15.1 14.9
#> B
#> F 90 36.0 6.4 0.7 17.7 17.9
#> M 81 36.4 6.5 0.7 17.9 17.8
#> C
#> F 117 34.1 6.2 0.6 18.2 18.3
#> M 72 33.2 11.5 1.4 34.6 31.6
# By selecting just some statistics and ad-hoc labels
lyt <- basic_table() %>%
split_rows_by(var = "ARM", label_pos = "topleft") %>%
split_rows_by(
var = "SEX",
label_pos = "topleft",
child_labels = "hidden",
split_fun = drop_split_levels
) %>%
analyze_vars_in_cols(
vars = "AGE",
.stats = c("n", "cv", "geom_mean"),
.labels = c(
n = "aN",
cv = "aCV",
geom_mean = "aGeomMean"
)
)
result <- build_table(lyt = lyt, df = adpp)
result
#> ARM
#> SEX aN aCV aGeomMean
#> ———————————————————————————————————————
#> A: Drug X
#> B: Placebo
#> C: Combination
#> F 288 17.6 35.5
#> M 234 23.4 35.3
# Changing row labels
lyt <- basic_table() %>%
analyze_vars_in_cols(
vars = "AGE",
row_labels = "some custom label"
)
result <- build_table(lyt, df = adpp)
result
#> n Mean SD SE CV (%) CV % Geometric Mean
#> —————————————————————————————————————————————————————————————————————————
#> some custom label 522 36.1 7.4 0.3 20.4 20.6
# Pharmacokinetic parameters
lyt <- basic_table() %>%
split_rows_by(
var = "TLG_DISPLAY",
split_label = "PK Parameter",
label_pos = "topleft",
child_label = "hidden"
) %>%
analyze_vars_in_cols(
vars = "AVAL"
)
result <- build_table(lyt, df = adpp)
result
#> PK Parameter n Mean SD SE CV (%) CV % Geometric Mean
#> —————————————————————————————————————————————————————————————————————
#> Cmax 58 29.7 5.6 0.7 19.0 19.3
#> AUCinf obs 58 207.5 34.9 4.6 16.8 17.3
#> CL obs 58 5.1 1.0 0.1 20.6 22.7
#> Ae 58 1.5 0.3 0.0 21.3 24.1
#> Fe 58 15.7 3.6 0.5 22.7 24.0
#> CLR 58 0.0 0.0 0.0 19.9 22.2
#> Rmax 58 9.6 2.0 0.3 21.1 21.6
#> Tonset 58 3.0 0.7 0.1 22.4 23.3
#> RENALCLD 58 0.0 0.0 0.0 19.0 19.4
# Multiple calls (summarize label and analyze underneath)
lyt <- basic_table() %>%
split_rows_by(
var = "TLG_DISPLAY",
split_label = "PK Parameter",
label_pos = "topleft"
) %>%
analyze_vars_in_cols(
vars = "AVAL",
do_summarize_row_groups = TRUE # does a summarize level
) %>%
split_rows_by("SEX",
child_label = "hidden",
label_pos = "topleft"
) %>%
analyze_vars_in_cols(
vars = "AVAL",
split_col_vars = FALSE # avoids re-splitting the columns
)
result <- build_table(lyt, df = adpp)
result
#> PK Parameter
#> SEX n Mean SD SE CV (%) CV % Geometric Mean
#> —————————————————————————————————————————————————————————————————————
#> Cmax 58 29.7 5.6 0.7 19.0 19.3
#> F 32 30.1 6.1 1.1 20.4 21.0
#> M 26 29.2 5.0 1.0 17.2 17.2
#> AUCinf obs 58 207.5 34.9 4.6 16.8 17.3
#> F 32 209.5 43.3 7.7 20.7 21.6
#> M 26 205.0 20.9 4.1 10.2 10.4
#> CL obs 58 5.1 1.0 0.1 20.6 22.7
#> F 32 5.1 1.1 0.2 20.8 23.2
#> M 26 5.1 1.1 0.2 20.7 22.5
#> Ae 58 1.5 0.3 0.0 21.3 24.1
#> F 32 1.5 0.3 0.1 19.3 20.8
#> M 26 1.5 0.4 0.1 23.9 27.9
#> Fe 58 15.7 3.6 0.5 22.7 24.0
#> F 32 16.3 3.4 0.6 20.9 22.3
#> M 26 15.0 3.7 0.7 24.7 25.6
#> CLR 58 0.0 0.0 0.0 19.9 22.2
#> F 32 0.0 0.0 0.0 20.5 24.8
#> M 26 0.0 0.0 0.0 19.5 18.9
#> Rmax 58 9.6 2.0 0.3 21.1 21.6
#> F 32 9.6 2.2 0.4 22.4 23.5
#> M 26 9.6 1.9 0.4 19.7 19.5
#> Tonset 58 3.0 0.7 0.1 22.4 23.3
#> F 32 3.0 0.7 0.1 24.7 25.9
#> M 26 3.0 0.6 0.1 19.8 20.0
#> RENALCLD 58 0.0 0.0 0.0 19.0 19.4
#> F 32 0.0 0.0 0.0 19.6 20.4
#> M 26 0.0 0.0 0.0 18.0 17.6