Skip to contents

[Stable]

Counting the number of patients and summing analysis value (i.e exposure values) across all patients when a column table layout is required.

Usage

s_count_patients_sum_exposure(
  df,
  ex_var = "AVAL",
  id = "USUBJID",
  labelstr = "",
  .stats = c("n_patients", "sum_exposure"),
  .N_col,
  custom_label = NULL
)

a_count_patients_sum_exposure(
  df,
  var = NULL,
  ex_var = "AVAL",
  id = "USUBJID",
  labelstr = "",
  add_total_level = FALSE,
  .N_col,
  .stats,
  .formats = list(n_patients = "xx (xx.x%)", sum_exposure = "xx"),
  custom_label = NULL
)

summarize_patients_exposure_in_cols(
  lyt,
  var,
  ...,
  .stats = c("n_patients", "sum_exposure"),
  .labels = c(n_patients = "Patients", sum_exposure = "Person time"),
  .indent_mods = NULL,
  col_split = TRUE
)

analyze_patients_exposure_in_cols(
  lyt,
  var = NULL,
  ex_var = "AVAL",
  col_split = TRUE,
  add_total_level = FALSE,
  .stats = c("n_patients", "sum_exposure"),
  .labels = c(n_patients = "Patients", sum_exposure = "Person time"),
  .indent_mods = 0L,
  ...
)

Arguments

df

(data.frame)
data set containing all analysis variables.

ex_var

(character)
name of the variable within df containing exposure values.

id

(string)
subject variable name.

labelstr

(character)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). See rtables::summarize_row_groups() for more information.

.stats

(character)
statistics to select for the table.

.N_col

(integer)
column-wise N (column count) for the full column being analyzed that is typically passed by rtables.

custom_label

(string or NULL)
if provided and labelstr is empty then this will be used as label.

var

(string)
single variable name that is passed by rtables when requested by a statistics function.

add_total_level

(flag)
adds a "total" level after the others which includes all the levels that constitute the split. A custom label can be set for this level via the custom_label argument.

.formats

(named character or list)
formats for the statistics.

lyt

(layout)
input layout where analyses will be added to.

...

additional arguments for the lower level functions.

.labels

(named character)
labels for the statistics (without indent).

.indent_mods

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.

col_split

(flag)
whether the columns should be split. Set to FALSE when the required column split has been done already earlier in the layout pipe.

Value

  • s_count_patients_sum_exposure() returns a named list with the statistics:

    • n_patients: Number of unique patients in df.

    • sum_exposure: Sum of ex_var across all patients in df.

  • summarize_patients_exposure_in_cols() returns a layout object suitable for passing to further layouting functions, or to rtables::build_table(). Adding this function to an rtable layout will add formatted content rows, with the statistics from s_count_patients_sum_exposure() arranged in columns, to the table layout.

  • analyze_patients_exposure_in_cols() returns a layout object suitable for passing to further layouting functions, or to rtables::build_table(). Adding this function to an rtable layout will add formatted data rows, with the statistics from s_count_patients_sum_exposure() arranged in columns, to the table layout.

Functions

Note

As opposed to summarize_patients_exposure_in_cols() which generates content rows, analyze_patients_exposure_in_cols() generates data rows which will not be repeated on multiple pages when pagination is used.

Examples

set.seed(1)
df <- data.frame(
  USUBJID = c(paste("id", seq(1, 12), sep = "")),
  ARMCD = c(rep("ARM A", 6), rep("ARM B", 6)),
  SEX = c(rep("Female", 6), rep("Male", 6)),
  AVAL = as.numeric(sample(seq(1, 20), 12)),
  stringsAsFactors = TRUE
)
adsl <- data.frame(
  USUBJID = c(paste("id", seq(1, 12), sep = "")),
  ARMCD = c(rep("ARM A", 2), rep("ARM B", 2)),
  SEX = c(rep("Female", 2), rep("Male", 2)),
  stringsAsFactors = TRUE
)

a_count_patients_sum_exposure(
  df = df,
  var = "SEX",
  .N_col = nrow(df),
  .stats = "n_patients"
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#>   row_name formatted_cell indent_mod row_label
#> 1   Female      6 (50.0%)          0    Female
#> 2     Male      6 (50.0%)          0      Male

lyt <- basic_table() %>%
  summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE)
result <- build_table(lyt, df = df, alt_counts_df = adsl)
result
#>                                       Patients     Person time
#> ——————————————————————————————————————————————————————————————
#> Total patients numbers/person time   12 (100.0%)       114    

lyt2 <- basic_table() %>%
  summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE, .stats = "sum_exposure")
result2 <- build_table(lyt2, df = df, alt_counts_df = adsl)
result2
#>                                      Person time
#> ————————————————————————————————————————————————
#> Total patients numbers/person time       114    

lyt3 <- basic_table() %>%
  split_cols_by("ARMCD", split_fun = add_overall_level("Total", first = FALSE)) %>%
  summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE) %>%
  analyze_patients_exposure_in_cols(var = "SEX", col_split = FALSE)
result3 <- build_table(lyt3, df = df, alt_counts_df = adsl)
result3
#>                                               ARM A                      ARM B                       Total          
#>                                       Patients    Person time    Patients    Person time    Patients     Person time
#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
#> Total patients numbers/person time   6 (100.0%)       46        6 (100.0%)       68        12 (100.0%)       114    
#>   Female                             6 (100.0%)       46         0 (0.0%)         0         6 (50.0%)        46     
#>   Male                                0 (0.0%)         0        6 (100.0%)       68         6 (50.0%)        68     

lyt4 <- basic_table() %>%
  split_cols_by("ARMCD", split_fun = add_overall_level("Total", first = FALSE)) %>%
  summarize_patients_exposure_in_cols(
    var = "AVAL", col_split = TRUE,
    .stats = "n_patients", custom_label = "some custom label"
  ) %>%
  analyze_patients_exposure_in_cols(var = "SEX", col_split = FALSE, ex_var = "AVAL")
result4 <- build_table(lyt4, df = df, alt_counts_df = adsl)
result4
#>                       ARM A        ARM B         Total   
#>                      Patients     Patients     Patients  
#> —————————————————————————————————————————————————————————
#> some custom label   6 (100.0%)   6 (100.0%)   12 (100.0%)
#>   Female            6 (100.0%)    0 (0.0%)     6 (50.0%) 
#>   Male               0 (0.0%)    6 (100.0%)    6 (50.0%) 

lyt5 <- basic_table() %>%
  analyze_patients_exposure_in_cols(var = "SEX", col_split = TRUE, ex_var = "AVAL")
result5 <- build_table(lyt5, df = df, alt_counts_df = adsl)
result5
#>          Patients    Person time
#> ————————————————————————————————
#> Female   6 (50.0%)       46     
#> Male     6 (50.0%)       68     

# Adding total levels and custom label
lyt <- basic_table(
  show_colcounts = TRUE
) %>%
  analyze_patients_exposure_in_cols(
    var = "ARMCD",
    col_split = TRUE,
    add_total_level = TRUE,
    custom_label = "TOTAL"
  ) %>%
  append_topleft(c("", "Sex"))

tbl <- build_table(lyt, df = df, alt_counts_df = adsl)
tbl
#>          Patients     Person time
#> Sex       (N=12)        (N=12)   
#> —————————————————————————————————
#> ARM A    6 (50.0%)        46     
#> ARM B    6 (50.0%)        68     
#> TOTAL   12 (100.0%)       114