Compares bivariate responses between two groups in terms of odds ratios along with a confidence interval.
Usage
s_odds_ratio(
df,
.var,
.ref_group,
.in_ref_col,
.df_row,
variables = list(arm = NULL, strata = NULL),
conf_level = 0.95,
groups_list = NULL
)
a_odds_ratio(
df,
.var,
.ref_group,
.in_ref_col,
.df_row,
variables = list(arm = NULL, strata = NULL),
conf_level = 0.95,
groups_list = NULL
)
estimate_odds_ratio(
lyt,
vars,
nested = TRUE,
...,
show_labels = "hidden",
table_names = vars,
.stats = "or_ci",
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
Arguments
- df
(
data.frame
)
data set containing all analysis variables.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- .ref_group
(
data.frame
orvector
)
the data corresponding to the reference group.- .in_ref_col
(
logical
)TRUE
when working with the reference level,FALSE
otherwise.- .df_row
(
data.frame
)
data frame across all of the columns for the given row split.- variables
(named
list
ofstring
)
list of additional analysis variables.- conf_level
(
proportion
)
confidence level of the interval.- groups_list
(named
list
ofcharacter
)
specifies the new group levels via the names and the levels that belong to it in the character vectors that are elements of the list.- lyt
(
layout
)
input layout where analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
arguments passed to
s_odds_ratio()
.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character
)
this can be customized in case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.
Value
s_odds_ratio()
returns a named list with the statisticsor_ci
(containingest
,lcl
, anducl
) andn_tot
.
a_odds_ratio()
returns the corresponding list with formattedrtables::CellValue()
.
estimate_odds_ratio()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_odds_ratio()
to the table layout.
Details
This function uses either logistic regression for unstratified analyses, or conditional logistic regression for stratified analyses. The Wald confidence interval with the specified confidence level is calculated.
Functions
s_odds_ratio()
: Statistics function which estimates the odds ratio between a treatment and a control. Avariables
list witharm
andstrata
variable names must be passed if a stratified analysis is required.a_odds_ratio()
: Formatted analysis function which is used asafun
inestimate_odds_ratio()
.estimate_odds_ratio()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.
Note
For stratified analyses, there is currently no implementation for conditional
likelihood confidence intervals, therefore the likelihood confidence interval is not
yet available as an option. Besides, when rsp
contains only responders or non-responders,
then the result values will be NA
, because no odds ratio estimation is possible.
See also
Relevant helper function h_odds_ratio()
.
Examples
set.seed(12)
dta <- data.frame(
rsp = sample(c(TRUE, FALSE), 100, TRUE),
grp = factor(rep(c("A", "B"), each = 50), levels = c("B", "A")),
strata = factor(sample(c("C", "D"), 100, TRUE))
)
# Unstratified analysis.
s_odds_ratio(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
.df_row = dta
)
#> $or_ci
#> est lcl ucl
#> 0.8484848 0.3831831 1.8788053
#> attr(,"label")
#> [1] "Odds Ratio (95% CI)"
#>
#> $n_tot
#> n_tot
#> 100
#> attr(,"label")
#> [1] "Total n"
#>
# Stratified analysis.
s_odds_ratio(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
.df_row = dta,
variables = list(arm = "grp", strata = "strata")
)
#> $or_ci
#> est lcl ucl
#> 0.7689750 0.3424155 1.7269154
#> attr(,"label")
#> [1] "Odds Ratio (95% CI)"
#>
#> $n_tot
#> n_tot
#> 100
#> attr(,"label")
#> [1] "Total n"
#>
a_odds_ratio(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
.df_row = dta
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 or_ci 0.85 (0.38 - 1.88) 1 Odds Ratio (95% CI)
#> 2 n_tot 100 0 Total n
dta <- data.frame(
rsp = sample(c(TRUE, FALSE), 100, TRUE),
grp = factor(rep(c("A", "B"), each = 50))
)
l <- basic_table() %>%
split_cols_by(var = "grp", ref_group = "B") %>%
estimate_odds_ratio(vars = "rsp")
build_table(l, df = dta)
#> B A
#> ————————————————————————————————————————————
#> Odds Ratio (95% CI) 0.72 (0.33 - 1.60)