Helper Functions for Subgroup Treatment Effect Pattern (STEP) Calculations
Source:R/h_step.R
h_step.RdUsage
h_step_window(x, control = control_step())
h_step_trt_effect(data, model, variables, x)
h_step_survival_formula(variables, control = control_step())
h_step_survival_est(
formula,
data,
variables,
x,
subset = rep(TRUE, nrow(data)),
control = control_coxph()
)
h_step_rsp_formula(variables, control = c(control_step(), control_logistic()))
h_step_rsp_est(
formula,
data,
variables,
x,
subset = rep(TRUE, nrow(data)),
control = control_logistic()
)Arguments
- x
(
numeric)
biomarker value(s) to use (withoutNA).- control
(named
list)
output fromcontrol_step().- data
(
data.frame)
the dataset containing the variables to summarize.- model
the regression model object.
- variables
(named
listofstring)
list of additional analysis variables.- formula
(
formula)
the regression model formula.- subset
(
logical)
subset vector.
Value
h_step_window()returns a list containing the window-selection matrixseland the interval information matrixinterval.
h_step_trt_effect()returns a vector with elementsestandse.
h_step_survival_formula()returns a model formula.
h_step_survival_est()returns a matrix of number of observationsn,events, log hazard ratio estimatesloghr, standard errorse, and Wald confidence interval boundsci_lowerandci_upper. One row is included for each biomarker value inx.
h_step_rsp_formula()returns a model formula.
h_step_rsp_est()returns a matrix of number of observationsn, log odds ratio estimateslogor, standard errorse, and Wald confidence interval boundsci_lowerandci_upper. One row is included for each biomarker value inx.
Functions
h_step_window(): creates the windows for STEP, based on the control settings provided.h_step_trt_effect(): calculates the estimated treatment effect estimate on the linear predictor scale and corresponding standard error from a STEPmodelfitted ondatagivenvariablesspecification, for a single biomarker valuex. This works for bothcoxphandglmmodels, i.e. for calculating log hazard ratio or log odds ratio estimates.h_step_survival_formula(): builds the model formula used in survival STEP calculations.h_step_survival_est(): estimates the model withformulabuilt based onvariablesindatafor a givensubsetandcontrolparameters for the Cox regression.h_step_rsp_formula(): builds the model formula used in response STEP calculations.h_step_rsp_est(): estimates the model withformulabuilt based onvariablesindatafor a givensubsetandcontrolparameters for the logistic regression.