Helper Functions for Calculating Proportion Confidence Intervals
Source:R/estimate_proportion.R
h_proportions.RdFunctions to calculate different proportion confidence intervals for use in estimate_proportion().
Usage
prop_wilson(rsp, conf_level, correct = FALSE)
prop_strat_wilson(
rsp,
strata,
weights = NULL,
conf_level = 0.95,
max_iterations = NULL,
correct = FALSE
)
prop_clopper_pearson(rsp, conf_level)
prop_wald(rsp, conf_level, correct = FALSE)
prop_agresti_coull(rsp, conf_level)
prop_jeffreys(rsp, conf_level)Arguments
- rsp
(
logical)
whether each subject is a responder or not.- conf_level
(
proportion)
confidence level of the interval.- correct
(
flag)
apply continuity correction.- strata
(
factor)
variable with one level per stratum and same length asrsp.- weights
(
numericorNULL)
weights for each level of the strata. IfNULL, they are estimated using the iterative algorithm proposed in Yan and Su (2010) that minimizes the weighted squared length of the confidence interval.- max_iterations
(
count)
maximum number of iterations for the iterative procedure used to find estimates of optimal weights.
Functions
prop_wilson(): Calculates the Wilson interval by callingstats::prop.test(). Also referred to as Wilson score interval.prop_strat_wilson(): Calculates the stratified Wilson confidence interval for unequal proportions as described in Yan and Su (2010)prop_clopper_pearson(): Calculates the Clopper-Pearson interval by callingstats::binom.test(). Also referred to as theexactmethod.prop_wald(): Calculates the Wald interval by following the usual textbook definition for a single proportion confidence interval using the normal approximation.prop_agresti_coull(): Calculates theAgresti-Coullinterval (created byAlan AgrestiandBrent Coull) by (for 95% CI) adding two successes and two failures to the data and then using the Wald formula to construct a CI.prop_jeffreys(): Calculates the Jeffreys interval, an equal-tailed interval based on the non-informative Jeffreys prior for a binomial proportion.
References
Yan X, Su XG (2010). “Stratified Wilson and Newcombe Confidence Intervals for Multiple Binomial Proportions.” Stat. Biopharm. Res., 2(3), 329--335.
See also
estimate_proportions, descriptive function d_proportion(),
and helper functions strata_normal_quantile() and update_weights_strat_wilson().
Examples
rsp <- c(
TRUE, TRUE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE
)
prop_wilson(rsp, conf_level = 0.9)
#> [1] 0.2692718 0.7307282
# Stratified Wilson confidence interval with unequal probabilities
set.seed(1)
rsp <- sample(c(TRUE, FALSE), 100, TRUE)
strata_data <- data.frame(
"f1" = sample(c("a", "b"), 100, TRUE),
"f2" = sample(c("x", "y", "z"), 100, TRUE),
stringsAsFactors = TRUE
)
strata <- interaction(strata_data)
n_strata <- ncol(table(rsp, strata)) # Number of strata
prop_strat_wilson(
rsp = rsp, strata = strata,
conf_level = 0.90
)
#> $conf_int
#> lower upper
#> 0.4072891 0.5647887
#>
#> $weights
#> a.x b.x a.y b.y a.z b.z
#> 0.2074199 0.1776464 0.1915610 0.1604678 0.1351096 0.1277952
#>
# Not automatic setting of weights
prop_strat_wilson(
rsp = rsp, strata = strata,
weights = rep(1 / n_strata, n_strata),
conf_level = 0.90
)
#> $conf_int
#> lower upper
#> 0.4190436 0.5789733
#>
prop_clopper_pearson(rsp, conf_level = .95)
#> [1] 0.3886442 0.5919637
prop_wald(rsp, conf_level = 0.95)
#> [1] 0.3920214 0.5879786
prop_wald(rsp, conf_level = 0.95, correct = TRUE)
#> [1] 0.3870214 0.5929786
prop_agresti_coull(rsp, conf_level = 0.95)
#> [1] 0.3942193 0.5865206
prop_jeffreys(rsp, conf_level = 0.95)
#> [1] 0.3934779 0.5870917