We use the S3 generic function s_summary()
to implement summaries for different x
objects. This
is used as a statistics function in combination with the analyze function summarize_vars()
.
Usage
s_summary(x, na.rm = TRUE, denom, .N_row, .N_col, .var, ...)
# S3 method for numeric
s_summary(
x,
na.rm = TRUE,
denom,
.N_row,
.N_col,
.var,
control = control_summarize_vars(),
...
)
# S3 method for factor
s_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
...
)
# S3 method for character
s_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
.var,
verbose = TRUE,
...
)
# S3 method for logical
s_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
...
)
a_summary(x, ..., .N_row, .N_col, .var)
# S3 method for numeric
a_summary(
x,
na.rm = TRUE,
denom,
.N_row,
.N_col,
.var,
control = control_summarize_vars(),
...
)
# S3 method for factor
a_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
...
)
# S3 method for character
a_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
.var,
verbose = TRUE,
...
)
# S3 method for logical
a_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
...
)
summarize_vars(
lyt,
vars,
var_labels = vars,
nested = TRUE,
...,
na_level = NA_character_,
show_labels = "default",
table_names = vars,
section_div = NA_character_,
.stats = c("n", "mean_sd", "median", "range", "count_fraction"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
Arguments
- x
(
numeric
)
vector of numbers we want to analyze.- na.rm
(
flag
)
whetherNA
values should be removed fromx
prior to analysis.- denom
-
(
string
)
choice of denominator for proportion. Options are:n
: number of values in this row and column intersection.N_row
: total number of values in this row across columns.N_col
: total number of values in this column across rows.
- .N_row
(
count
)
column-wise N (column count) for the full column that is passed byrtables
.- .N_col
(
count
)
row-wise N (row group count) for the group of observations being analyzed (i.e. with no column-based subsetting) that is passed byrtables
.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- ...
arguments passed to
s_summary()
.- control
-
(
list
)
parameters for descriptive statistics details, specified by using the helper functioncontrol_summarize_vars()
. Some possible parameter options are:conf_level
(proportion
)
confidence level of the interval for mean and median.quantiles
(numeric
)
vector of length two to specify the quantiles.quantile_type
(numeric
)
between 1 and 9 selecting quantile algorithms to be used. See more abouttype
instats::quantile()
.test_mean
(numeric
)
value to test against the mean under the null hypothesis when calculating p-value.
- verbose
(
logical
)
Defaults toTRUE
, which prints out warnings and messages. It is mainly used to print out information about factor casting.- lyt
(
layout
)
input layout where analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- var_labels
(
character
)
character for label.- nested
(
flag
)
whether this layout instruction be applied within the existing layout structure if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split underneath analyses, which is not allowed.- na_level
(
string
)
string used to replace allNA
or empty values in the output.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character
)
this can be customized in case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- section_div
(
string
)
string which should be repeated as a section divider after each group defined by this split instruction, orNA_character_
(the default) for no section divider.- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
vector
ofinteger
)
indent modifiers for the labels. Each element of the vector should be a name-value pair with name corresponding to a statistic specified in.stats
and value the indentation for that statistic's row label.
Value
s_summary()
returns different statistics depending on the class ofx
.
-
If
x
is of classnumeric
, returns alist
with the following namednumeric
items:n
: Thelength()
ofx
.sum
: Thesum()
ofx
.mean
: Themean()
ofx
.sd
: Thestats::sd()
ofx
.se
: The standard error ofx
mean, i.e.: (sd(x) / sqrt(length(x))
).mean_sd
: Themean()
andstats::sd()
ofx
.mean_se
: Themean()
ofx
and its standard error (see above).mean_ci
: The CI for the mean ofx
(fromstat_mean_ci()
).mean_sei
: The SE interval for the mean ofx
, i.e.: (mean()
-/+stats::sd()
/sqrt()
).mean_sdi
: The SD interval for the mean ofx
, i.e.: (mean()
-/+stats::sd()
).mean_pval
: The two-sided p-value of the mean ofx
(fromstat_mean_pval()
).median
: Thestats::median()
ofx
.mad
: The median absolute deviation ofx
, i.e.: (stats::median()
ofxc
, wherexc
=x
-stats::median()
).median_ci
: The CI for the median ofx
(fromstat_median_ci()
).quantiles
: Two sample quantiles ofx
(fromstats::quantile()
).iqr
: Thestats::IQR()
ofx
.range
: Therange_noinf()
ofx
.min
: Themax()
ofx
.max
: Themin()
ofx
.median_range
: Themedian()
andrange_noinf()
ofx
.cv
: The coefficient of variation ofx
, i.e.: (stats::sd()
/mean()
* 100).geom_mean
: The geometric mean ofx
, i.e.: (exp(mean(log(x)))
).geom_cv
: The geometric coefficient of variation ofx
, i.e.: (sqrt(exp(sd(log(x)) ^ 2) - 1) * 100
).
-
If
x
is of classfactor
or converted fromcharacter
, returns alist
with namednumeric
items:n
: Thelength()
ofx
.count
: A list with the number of cases for each level of the factorx
.count_fraction
: Similar tocount
but also includes the proportion of cases for each level of the factorx
relative to the denominator, orNA
if the denominator is zero.
-
If
x
is of classlogical
, returns alist
with namednumeric
items:n
: Thelength()
ofx
(possibly after removingNA
s).count
: Count ofTRUE
inx
.count_fraction
: Count and proportion ofTRUE
inx
relative to the denominator, orNA
if the denominator is zero. Note thatNA
s inx
are never counted or leading toNA
here.
a_summary()
returns the corresponding list with formattedrtables::CellValue()
.
summarize_vars()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_summary()
to the table layout.
Functions
s_summary()
: S3 generic function to produces a variable summary.s_summary(numeric)
: Method fornumeric
class.s_summary(factor)
: Method forfactor
class.s_summary(character)
: Method forcharacter
class. This makes an automatic conversion to factor (with a warning) and then forwards to the method for factors.s_summary(logical)
: Method forlogical
class.a_summary()
: Formatted analysis function which is used asafun
insummarize_vars()
.a_summary(numeric)
: Formatted analysis function method fornumeric
class.a_summary(factor)
: Formatted analysis function method forfactor
class.a_summary(character)
: Formatted analysis function method forcharacter
class.a_summary(logical)
: Formatted analysis function method forlogical
class.summarize_vars()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.
Note
If
x
is an empty vector,NA
is returned. This is the expected feature so as to returnrcell
content inrtables
when the intersection of a column and a row delimits an empty data selection.When the
mean
function is applied to an empty vector,NA
will be returned instead ofNaN
, the latter being standard behavior in R.
If
x
is an emptyfactor
, a list is still returned forcounts
with one element per factor level. If there are no levels inx
, the function fails.If factor variables contain
NA
, theseNA
values are excluded by default. To includeNA
values setna.rm = FALSE
and missing values will be displayed as anNA
level. Alternatively, an explicit factor level can be defined forNA
values during pre-processing viadf_explicit_na()
- the defaultna_level
("<Missing>"
) will also be excluded whenna.rm
is set toTRUE
.
Automatic conversion of character to factor does not guarantee that the table can be generated correctly. In particular for sparse tables this very likely can fail. It is therefore better to always pre-process the dataset such that factors are manually created from character variables before passing the dataset to
rtables::build_table()
.
Examples
# `s_summary.numeric`
## Basic usage: empty numeric returns NA-filled items.
s_summary(numeric())
#> $n
#> n
#> 0
#>
#> $sum
#> sum
#> NA
#>
#> $mean
#> mean
#> NA
#>
#> $sd
#> sd
#> NA
#>
#> $se
#> se
#> NA
#>
#> $mean_sd
#> mean sd
#> NA NA
#>
#> $mean_se
#> mean se
#> NA NA
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> NA
#>
#> $mad
#> mad
#> NA
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> NA
#>
#> $range
#> min max
#> NA NA
#>
#> $min
#> min
#> NA
#>
#> $max
#> max
#> NA
#>
#> $median_range
#> median min max
#> NA NA NA
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $cv
#> cv
#> NA
#>
#> $geom_mean
#> geom_mean
#> NaN
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> NA
#>
## Management of NA values.
x <- c(NA_real_, 1)
s_summary(x, na.rm = TRUE)
#> $n
#> n
#> 1
#>
#> $sum
#> sum
#> 1
#>
#> $mean
#> mean
#> 1
#>
#> $sd
#> sd
#> NA
#>
#> $se
#> se
#> NA
#>
#> $mean_sd
#> mean sd
#> 1 NA
#>
#> $mean_se
#> mean se
#> 1 NA
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> 1
#>
#> $mad
#> mad
#> 0
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> 1 1
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> 0
#>
#> $range
#> min max
#> 1 1
#>
#> $min
#> min
#> 1
#>
#> $max
#> max
#> 1
#>
#> $median_range
#> median min max
#> 1 1 1
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $cv
#> cv
#> NA
#>
#> $geom_mean
#> geom_mean
#> 1
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> NA
#>
s_summary(x, na.rm = FALSE)
#> $n
#> n
#> 2
#>
#> $sum
#> sum
#> NA
#>
#> $mean
#> mean
#> NA
#>
#> $sd
#> sd
#> NA
#>
#> $se
#> se
#> NA
#>
#> $mean_sd
#> mean sd
#> NA NA
#>
#> $mean_se
#> mean se
#> NA NA
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> NA
#>
#> $mad
#> mad
#> NA
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> NA
#>
#> $range
#> min max
#> NA NA
#>
#> $min
#> min
#> NA
#>
#> $max
#> max
#> NA
#>
#> $median_range
#> median min max
#> NA NA NA
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $cv
#> cv
#> NA
#>
#> $geom_mean
#> geom_mean
#> NA
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> NA
#>
x <- c(NA_real_, 1, 2)
s_summary(x, stats = NULL)
#> $n
#> n
#> 2
#>
#> $sum
#> sum
#> 3
#>
#> $mean
#> mean
#> 1.5
#>
#> $sd
#> sd
#> 0.7071068
#>
#> $se
#> se
#> 0.5
#>
#> $mean_sd
#> mean sd
#> 1.5000000 0.7071068
#>
#> $mean_se
#> mean se
#> 1.5 0.5
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> -4.853102 7.853102
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> 1 2
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> 0.7928932 2.2071068
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> 0.2048328
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> 1.5
#>
#> $mad
#> mad
#> 0
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> 1 2
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> 1
#>
#> $range
#> min max
#> 1 2
#>
#> $min
#> min
#> 1
#>
#> $max
#> max
#> 2
#>
#> $median_range
#> median min max
#> 1.5 1.0 2.0
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $cv
#> cv
#> 47.14045
#>
#> $geom_mean
#> geom_mean
#> 1.414214
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> 0.01729978 115.60839614
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> 52.10922
#>
## Benefits in `rtables` contructions:
require(rtables)
dta_test <- data.frame(
Group = rep(LETTERS[1:3], each = 2),
sub_group = rep(letters[1:2], each = 3),
x = 1:6
)
## The summary obtained in with `rtables`:
basic_table() %>%
split_cols_by(var = "Group") %>%
split_rows_by(var = "sub_group") %>%
analyze(vars = "x", afun = s_summary) %>%
build_table(df = dta_test)
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> A B C
#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
#> a
#> n 2 1 0
#> sum 3 3 NA
#> mean 1.5 3 NA
#> sd 0.707106781186548 NA NA
#> se 0.5 NA NA
#> mean_sd 1.5, 0.707106781186548 3, NA NA
#> mean_se 1.5, 0.5 3, NA NA
#> Mean 95% CI -4.85310236808735, 7.85310236808735 NA NA
#> Mean -/+ 1xSE 1, 2 NA NA
#> Mean -/+ 1xSD 0.792893218813452, 2.20710678118655 NA NA
#> Mean p-value (H0: mean = 0) 0.204832764699133 NA NA
#> median 1.5 3 NA
#> mad 0 0 NA
#> Median 95% CI NA NA NA
#> 25% and 75%-ile 1, 2 3, 3 NA
#> iqr 1 0 NA
#> range 1, 2 3, 3 NA
#> min 1 3 NA
#> max 2 3 NA
#> Median (Min - Max) 1.5, 1, 2 3, 3, 3 NA
#> cv 47.1404520791032 NA NA
#> geom_mean 1.41421356237309 3 NA
#> Geometric Mean 95% CI 0.0172997815631007, 115.608396135236 NA NA
#> geom_cv 52.1092246837487 NA NA
#> b
#> n 0 1 2
#> sum NA 4 11
#> mean NA 4 5.5
#> sd NA NA 0.707106781186548
#> se NA NA 0.5
#> mean_sd NA 4, NA 5.5, 0.707106781186548
#> mean_se NA 4, NA 5.5, 0.5
#> Mean 95% CI NA NA -0.853102368087347, 11.8531023680873
#> Mean -/+ 1xSE NA NA 5, 6
#> Mean -/+ 1xSD NA NA 4.79289321881345, 6.20710678118655
#> Mean p-value (H0: mean = 0) NA NA 0.0577158767526089
#> median NA 4 5.5
#> mad NA 0 0
#> Median 95% CI NA NA NA
#> 25% and 75%-ile NA 4, 4 5, 6
#> iqr NA 0 1
#> range NA 4, 4 5, 6
#> min NA 4 5
#> max NA 4 6
#> Median (Min - Max) NA 4, 4, 4 5.5, 5, 6
#> cv NA NA 12.8564869306645
#> geom_mean NA 4 5.47722557505166
#> Geometric Mean 95% CI NA NA 1.71994304449266, 17.4424380482025
#> geom_cv NA NA 12.945835316564
## By comparison with `lapply`:
X <- split(dta_test, f = with(dta_test, interaction(Group, sub_group)))
lapply(X, function(x) s_summary(x$x))
#> $A.a
#> $A.a$n
#> n
#> 2
#>
#> $A.a$sum
#> sum
#> 3
#>
#> $A.a$mean
#> mean
#> 1.5
#>
#> $A.a$sd
#> sd
#> 0.7071068
#>
#> $A.a$se
#> se
#> 0.5
#>
#> $A.a$mean_sd
#> mean sd
#> 1.5000000 0.7071068
#>
#> $A.a$mean_se
#> mean se
#> 1.5 0.5
#>
#> $A.a$mean_ci
#> mean_ci_lwr mean_ci_upr
#> -4.853102 7.853102
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $A.a$mean_sei
#> mean_sei_lwr mean_sei_upr
#> 1 2
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $A.a$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> 0.7928932 2.2071068
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $A.a$mean_pval
#> p_value
#> 0.2048328
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $A.a$median
#> median
#> 1.5
#>
#> $A.a$mad
#> mad
#> 0
#>
#> $A.a$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $A.a$quantiles
#> quantile_0.25 quantile_0.75
#> 1 2
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $A.a$iqr
#> iqr
#> 1
#>
#> $A.a$range
#> min max
#> 1 2
#>
#> $A.a$min
#> min
#> 1
#>
#> $A.a$max
#> max
#> 2
#>
#> $A.a$median_range
#> median min max
#> 1.5 1.0 2.0
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $A.a$cv
#> cv
#> 47.14045
#>
#> $A.a$geom_mean
#> geom_mean
#> 1.414214
#>
#> $A.a$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> 0.01729978 115.60839614
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $A.a$geom_cv
#> geom_cv
#> 52.10922
#>
#>
#> $B.a
#> $B.a$n
#> n
#> 1
#>
#> $B.a$sum
#> sum
#> 3
#>
#> $B.a$mean
#> mean
#> 3
#>
#> $B.a$sd
#> sd
#> NA
#>
#> $B.a$se
#> se
#> NA
#>
#> $B.a$mean_sd
#> mean sd
#> 3 NA
#>
#> $B.a$mean_se
#> mean se
#> 3 NA
#>
#> $B.a$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $B.a$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $B.a$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $B.a$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $B.a$median
#> median
#> 3
#>
#> $B.a$mad
#> mad
#> 0
#>
#> $B.a$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $B.a$quantiles
#> quantile_0.25 quantile_0.75
#> 3 3
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $B.a$iqr
#> iqr
#> 0
#>
#> $B.a$range
#> min max
#> 3 3
#>
#> $B.a$min
#> min
#> 3
#>
#> $B.a$max
#> max
#> 3
#>
#> $B.a$median_range
#> median min max
#> 3 3 3
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $B.a$cv
#> cv
#> NA
#>
#> $B.a$geom_mean
#> geom_mean
#> 3
#>
#> $B.a$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $B.a$geom_cv
#> geom_cv
#> NA
#>
#>
#> $C.a
#> $C.a$n
#> n
#> 0
#>
#> $C.a$sum
#> sum
#> NA
#>
#> $C.a$mean
#> mean
#> NA
#>
#> $C.a$sd
#> sd
#> NA
#>
#> $C.a$se
#> se
#> NA
#>
#> $C.a$mean_sd
#> mean sd
#> NA NA
#>
#> $C.a$mean_se
#> mean se
#> NA NA
#>
#> $C.a$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $C.a$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $C.a$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $C.a$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $C.a$median
#> median
#> NA
#>
#> $C.a$mad
#> mad
#> NA
#>
#> $C.a$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $C.a$quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $C.a$iqr
#> iqr
#> NA
#>
#> $C.a$range
#> min max
#> NA NA
#>
#> $C.a$min
#> min
#> NA
#>
#> $C.a$max
#> max
#> NA
#>
#> $C.a$median_range
#> median min max
#> NA NA NA
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $C.a$cv
#> cv
#> NA
#>
#> $C.a$geom_mean
#> geom_mean
#> NaN
#>
#> $C.a$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $C.a$geom_cv
#> geom_cv
#> NA
#>
#>
#> $A.b
#> $A.b$n
#> n
#> 0
#>
#> $A.b$sum
#> sum
#> NA
#>
#> $A.b$mean
#> mean
#> NA
#>
#> $A.b$sd
#> sd
#> NA
#>
#> $A.b$se
#> se
#> NA
#>
#> $A.b$mean_sd
#> mean sd
#> NA NA
#>
#> $A.b$mean_se
#> mean se
#> NA NA
#>
#> $A.b$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $A.b$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $A.b$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $A.b$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $A.b$median
#> median
#> NA
#>
#> $A.b$mad
#> mad
#> NA
#>
#> $A.b$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $A.b$quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $A.b$iqr
#> iqr
#> NA
#>
#> $A.b$range
#> min max
#> NA NA
#>
#> $A.b$min
#> min
#> NA
#>
#> $A.b$max
#> max
#> NA
#>
#> $A.b$median_range
#> median min max
#> NA NA NA
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $A.b$cv
#> cv
#> NA
#>
#> $A.b$geom_mean
#> geom_mean
#> NaN
#>
#> $A.b$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $A.b$geom_cv
#> geom_cv
#> NA
#>
#>
#> $B.b
#> $B.b$n
#> n
#> 1
#>
#> $B.b$sum
#> sum
#> 4
#>
#> $B.b$mean
#> mean
#> 4
#>
#> $B.b$sd
#> sd
#> NA
#>
#> $B.b$se
#> se
#> NA
#>
#> $B.b$mean_sd
#> mean sd
#> 4 NA
#>
#> $B.b$mean_se
#> mean se
#> 4 NA
#>
#> $B.b$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $B.b$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $B.b$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $B.b$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $B.b$median
#> median
#> 4
#>
#> $B.b$mad
#> mad
#> 0
#>
#> $B.b$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $B.b$quantiles
#> quantile_0.25 quantile_0.75
#> 4 4
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $B.b$iqr
#> iqr
#> 0
#>
#> $B.b$range
#> min max
#> 4 4
#>
#> $B.b$min
#> min
#> 4
#>
#> $B.b$max
#> max
#> 4
#>
#> $B.b$median_range
#> median min max
#> 4 4 4
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $B.b$cv
#> cv
#> NA
#>
#> $B.b$geom_mean
#> geom_mean
#> 4
#>
#> $B.b$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $B.b$geom_cv
#> geom_cv
#> NA
#>
#>
#> $C.b
#> $C.b$n
#> n
#> 2
#>
#> $C.b$sum
#> sum
#> 11
#>
#> $C.b$mean
#> mean
#> 5.5
#>
#> $C.b$sd
#> sd
#> 0.7071068
#>
#> $C.b$se
#> se
#> 0.5
#>
#> $C.b$mean_sd
#> mean sd
#> 5.5000000 0.7071068
#>
#> $C.b$mean_se
#> mean se
#> 5.5 0.5
#>
#> $C.b$mean_ci
#> mean_ci_lwr mean_ci_upr
#> -0.8531024 11.8531024
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $C.b$mean_sei
#> mean_sei_lwr mean_sei_upr
#> 5 6
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $C.b$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> 4.792893 6.207107
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $C.b$mean_pval
#> p_value
#> 0.05771588
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $C.b$median
#> median
#> 5.5
#>
#> $C.b$mad
#> mad
#> 0
#>
#> $C.b$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $C.b$quantiles
#> quantile_0.25 quantile_0.75
#> 5 6
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $C.b$iqr
#> iqr
#> 1
#>
#> $C.b$range
#> min max
#> 5 6
#>
#> $C.b$min
#> min
#> 5
#>
#> $C.b$max
#> max
#> 6
#>
#> $C.b$median_range
#> median min max
#> 5.5 5.0 6.0
#> attr(,"label")
#> [1] "Median (Min - Max)"
#>
#> $C.b$cv
#> cv
#> 12.85649
#>
#> $C.b$geom_mean
#> geom_mean
#> 5.477226
#>
#> $C.b$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> 1.719943 17.442438
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $C.b$geom_cv
#> geom_cv
#> 12.94584
#>
#>
# `s_summary.factor`
## Basic usage:
s_summary(factor(c("a", "a", "b", "c", "a")))
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#>
#> $count_fraction$b
#> [1] 1.0 0.2
#>
#> $count_fraction$c
#> [1] 1.0 0.2
#>
#>
#> $n_blq
#> [1] 0
#>
# Empty factor returns NA-filled items.
s_summary(factor(levels = c("a", "b", "c")))
#> $n
#> [1] 0
#>
#> $count
#> $count$a
#> [1] 0
#>
#> $count$b
#> [1] 0
#>
#> $count$c
#> [1] 0
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 0 0
#>
#> $count_fraction$b
#> [1] 0 0
#>
#> $count_fraction$c
#> [1] 0 0
#>
#>
#> $n_blq
#> [1] 0
#>
## Management of NA values.
x <- factor(c(NA, "Female"))
x <- explicit_na(x)
s_summary(x, na.rm = TRUE)
#> $n
#> [1] 1
#>
#> $count
#> $count$Female
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$Female
#> [1] 1 1
#>
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, na.rm = FALSE)
#> $n
#> [1] 2
#>
#> $count
#> $count$Female
#> [1] 1
#>
#> $count$`<Missing>`
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$Female
#> [1] 1.0 0.5
#>
#> $count_fraction$`<Missing>`
#> [1] 1.0 0.5
#>
#>
#> $n_blq
#> [1] 0
#>
## Different denominators.
x <- factor(c("a", "a", "b", "c", "a"))
s_summary(x, denom = "N_row", .N_row = 10L)
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.3
#>
#> $count_fraction$b
#> [1] 1.0 0.1
#>
#> $count_fraction$c
#> [1] 1.0 0.1
#>
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, denom = "N_col", .N_col = 20L)
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.00 0.15
#>
#> $count_fraction$b
#> [1] 1.00 0.05
#>
#> $count_fraction$c
#> [1] 1.00 0.05
#>
#>
#> $n_blq
#> [1] 0
#>
# `s_summary.character`
## Basic usage:
s_summary(c("a", "a", "b", "c", "a"), .var = "x", verbose = FALSE)
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#>
#> $count_fraction$b
#> [1] 1.0 0.2
#>
#> $count_fraction$c
#> [1] 1.0 0.2
#>
#>
#> $n_blq
#> [1] 0
#>
s_summary(c("a", "a", "b", "c", "a", ""), .var = "x", na.rm = FALSE, verbose = FALSE)
#> $n
#> [1] 6
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#> $count$`NA`
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.5
#>
#> $count_fraction$b
#> [1] 1.0000000 0.1666667
#>
#> $count_fraction$c
#> [1] 1.0000000 0.1666667
#>
#> $count_fraction$`NA`
#> [1] 1.0000000 0.1666667
#>
#>
#> $n_blq
#> [1] 0
#>
# `s_summary.logical`
## Basic usage:
s_summary(c(TRUE, FALSE, TRUE, TRUE))
#> $n
#> [1] 4
#>
#> $count
#> [1] 3
#>
#> $count_fraction
#> [1] 3.00 0.75
#>
#> $n_blq
#> [1] 0
#>
## Management of NA values.
x <- c(NA, TRUE, FALSE)
s_summary(x, na.rm = TRUE)
#> $n
#> [1] 2
#>
#> $count
#> [1] 1
#>
#> $count_fraction
#> [1] 1.0 0.5
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, na.rm = FALSE)
#> $n
#> [1] 3
#>
#> $count
#> [1] 1
#>
#> $count_fraction
#> [1] 1.0000000 0.3333333
#>
#> $n_blq
#> [1] 0
#>
## Different denominators.
x <- c(TRUE, FALSE, TRUE, TRUE)
s_summary(x, denom = "N_row", .N_row = 10L)
#> $n
#> [1] 4
#>
#> $count
#> [1] 3
#>
#> $count_fraction
#> [1] 3.0 0.3
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, denom = "N_col", .N_col = 20L)
#> $n
#> [1] 4
#>
#> $count
#> [1] 3
#>
#> $count_fraction
#> [1] 3.00 0.15
#>
#> $n_blq
#> [1] 0
#>
# `a_summary.numeric`
a_summary(rnorm(10), .N_col = 10, .N_row = 20, .var = "bla")
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 10 0 n
#> 2 sum 1.1 0 Sum
#> 3 mean 0.1 0 Mean
#> 4 sd 1.0 0 SD
#> 5 se 0.3 0 SE
#> 6 mean_sd 0.1 (1.0) 0 Mean (SD)
#> 7 mean_se 0.1 (0.3) 0 Mean (SE)
#> 8 mean_ci (-0.63, 0.86) 0 Mean 95% CI
#> 9 mean_sei (-0.22, 0.44) 0 Mean -/+ 1xSE
#> 10 mean_sdi (-0.93, 1.16) 0 Mean -/+ 1xSD
#> 11 mean_pval 0.74 0 Mean p-value (H0: mean = 0)
#> 12 median 0.2 0 Median
#> 13 mad 0.0 0 Median Absolute Deviation
#> 14 median_ci (-0.62, 1.12) 0 Median 95% CI
#> 15 quantiles -0.3 - 0.7 0 25% and 75%-ile
#> 16 iqr 1.0 0 IQR
#> 17 range -2.2 - 1.5 0 Min - Max
#> 18 min -2.2 0 Minimum
#> 19 max 1.5 0 Maximum
#> 20 median_range 0.2 (-2.2 - 1.5) 0 Median (Min - Max)
#> 21 cv 918.5 0 CV (%)
#> 22 geom_mean NA 0 Geometric Mean
#> 23 geom_mean_ci NA 0 Geometric Mean 95% CI
#> 24 geom_cv NA 0 CV % Geometric Mean
# `a_summary.factor`
# We need to ungroup `count` and `count_fraction` first so that the rtables formatting
# functions can be applied correctly.
afun <- make_afun(
getS3method("a_summary", "factor"),
.ungroup_stats = c("count", "count_fraction")
)
afun(factor(c("a", "a", "b", "c", "a")), .N_row = 10, .N_col = 10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 5 0 n
#> 2 a 3 0 a
#> 3 b 1 0 b
#> 4 c 1 0 c
#> 5 a 3 (60%) 0 a
#> 6 b 1 (20%) 0 b
#> 7 c 1 (20%) 0 c
#> 8 n_blq 0 0 n_blq
# `a_summary.character`
afun <- make_afun(
getS3method("a_summary", "character"),
.ungroup_stats = c("count", "count_fraction")
)
afun(c("A", "B", "A", "C"), .var = "x", .N_col = 10, .N_row = 10, verbose = FALSE)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 4 0 n
#> 2 A 2 0 A
#> 3 B 1 0 B
#> 4 C 1 0 C
#> 5 A 2 (50%) 0 A
#> 6 B 1 (25%) 0 B
#> 7 C 1 (25%) 0 C
#> 8 n_blq 0 0 n_blq
# `a_summary.logical`
afun <- make_afun(
getS3method("a_summary", "logical")
)
afun(c(TRUE, FALSE, FALSE, TRUE, TRUE), .N_row = 10, .N_col = 10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 5 0 n
#> 2 count 3 0 count
#> 3 count_fraction 3 (60%) 0 count_fraction
#> 4 n_blq 0 0 n_blq
## Fabricated dataset.
dta_test <- data.frame(
USUBJID = rep(1:6, each = 3),
PARAMCD = rep("lab", 6 * 3),
AVISIT = rep(paste0("V", 1:3), 6),
ARM = rep(LETTERS[1:3], rep(6, 3)),
AVAL = c(9:1, rep(NA, 9))
)
# `summarize_vars()` in `rtables` pipelines
## Default output within a `rtables` pipeline.
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
summarize_vars(vars = "AVAL")
build_table(l, df = dta_test)
#> A B C
#> ————————————————————————————————————————
#> V1
#> n 2 1 0
#> Mean (SD) 7.5 (2.1) 3.0 (NA) NA
#> Median 7.5 3.0 NA
#> Min - Max 6.0 - 9.0 3.0 - 3.0 NA
#> V2
#> n 2 1 0
#> Mean (SD) 6.5 (2.1) 2.0 (NA) NA
#> Median 6.5 2.0 NA
#> Min - Max 5.0 - 8.0 2.0 - 2.0 NA
#> V3
#> n 2 1 0
#> Mean (SD) 5.5 (2.1) 1.0 (NA) NA
#> Median 5.5 1.0 NA
#> Min - Max 4.0 - 7.0 1.0 - 1.0 NA
## Select and format statistics output.
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
summarize_vars(
vars = "AVAL",
.stats = c("n", "mean_sd", "quantiles"),
.formats = c("mean_sd" = "xx.x, xx.x"),
.labels = c(n = "n", mean_sd = "Mean, SD", quantiles = c("Q1 - Q3"))
)
results <- build_table(l, df = dta_test)
as_html(results)
#> <div class="rtables-all-parts-block rtables-container">
#> <table class="table table-condensed table-hover">
#> <tr>
#> <th style="white-space:pre;"></th>
#> <th class="text-center">A</th>
#> <th class="text-center">B</th>
#> <th class="text-center">C</th>
#> </tr>
#> <tr>
#> <td class="text-left">V1</td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">n</td>
#> <td class="text-center">2</td>
#> <td class="text-center">1</td>
#> <td class="text-center">0</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Mean, SD</td>
#> <td class="text-center">7.5, 2.1</td>
#> <td class="text-center">3.0, NA</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Q1 - Q3</td>
#> <td class="text-center">6.0 - 9.0</td>
#> <td class="text-center">3.0 - 3.0</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left">V2</td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">n</td>
#> <td class="text-center">2</td>
#> <td class="text-center">1</td>
#> <td class="text-center">0</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Mean, SD</td>
#> <td class="text-center">6.5, 2.1</td>
#> <td class="text-center">2.0, NA</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Q1 - Q3</td>
#> <td class="text-center">5.0 - 8.0</td>
#> <td class="text-center">2.0 - 2.0</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left">V3</td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">n</td>
#> <td class="text-center">2</td>
#> <td class="text-center">1</td>
#> <td class="text-center">0</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Mean, SD</td>
#> <td class="text-center">5.5, 2.1</td>
#> <td class="text-center">1.0, NA</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Q1 - Q3</td>
#> <td class="text-center">4.0 - 7.0</td>
#> <td class="text-center">1.0 - 1.0</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <caption style="caption-side:top;"><div class="rtables-titles-block rtables-container">
#> <div class="rtables-main-titles-block rtables-container">
#> <p class="rtables-main-title"></p>
#> </div>
#> <div class="rtables-subtitles-block rtables-container"></div>
#> </div>
#> </caption>
#> </table>
#> <div class="rtables-footers-block rtables-container"></div>
#> </div>
## Use arguments interpreted by `s_summary`.
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
summarize_vars(vars = "AVAL", na.rm = FALSE)
results <- build_table(l, df = dta_test)
## Handle `NA` levels first when summarizing factors.
dta_test$AVISIT <- NA_character_
dta_test <- df_explicit_na(dta_test)
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
summarize_vars(vars = "AVISIT", na.rm = FALSE)
results <- build_table(l, df = dta_test)
# \donttest{
Viewer(results)
# }