Skip to contents

[Stable]

Family of constructor and condition functions to flexibly prune occurrence tables. The condition functions always return whether the row result is higher than the threshold. Since they are of class CombinationFunction() they can be logically combined with other condition functions.

Usage

keep_rows(row_condition)

keep_content_rows(content_row_condition)

has_count_in_cols(atleast, ...)

has_count_in_any_col(atleast, ...)

has_fraction_in_cols(atleast, ...)

has_fraction_in_any_col(atleast, ...)

has_fractions_difference(atleast, ...)

has_counts_difference(atleast, ...)

Arguments

row_condition

(CombinationFunction)
condition function which works on individual analysis rows and flags whether these should be kept in the pruned table.

content_row_condition

(CombinationFunction)
condition function which works on individual first content rows of leaf tables and flags whether these leaf tables should be kept in the pruned table.

atleast

(count or proportion)
threshold which should be met in order to keep the row.

...

arguments for row or column access, see rtables_access: either col_names (character) including the names of the columns which should be used, or alternatively col_indices (integer) giving the indices directly instead.

Value

  • keep_rows() returns a pruning function that can be used with rtables::prune_table() to prune an rtables table.

  • keep_content_rows() returns a pruning function that checks the condition on the first content row of leaf tables in the table.

  • has_count_in_cols() returns a condition function that sums the counts in the specified column.

  • has_count_in_any_col() returns a condition function that compares the counts in the specified columns with the threshold.

  • has_fraction_in_cols() returns a condition function that sums the counts in the specified column, and computes the fraction by dividing by the total column counts.

  • has_fraction_in_any_col() returns a condition function that looks at the fractions in the specified columns and checks whether any of them fulfill the threshold.

  • has_fractions_difference() returns a condition function that extracts the fractions of each specified column, and computes the difference of the minimum and maximum.

  • has_counts_difference() returns a condition function that extracts the counts of each specified column, and computes the difference of the minimum and maximum.

Functions

  • keep_rows(): Constructor for creating pruning functions based on a row condition function. This removes all analysis rows (TableRow) that should be pruned, i.e., don't fulfill the row condition. It removes the sub-tree if there are no children left.

  • keep_content_rows(): Constructor for creating pruning functions based on a condition for the (first) content row in leaf tables. This removes all leaf tables where the first content row does not fulfill the condition. It does not check individual rows. It then proceeds recursively by removing the sub tree if there are no children left.

  • has_count_in_cols(): Constructor for creating condition functions on total counts in the specified columns.

  • has_count_in_any_col(): Constructor for creating condition functions on any of the counts in the specified columns satisfying a threshold.

  • has_fraction_in_cols(): Constructor for creating condition functions on total fraction in the specified columns.

  • has_fraction_in_any_col(): Constructor for creating condition functions on any fraction in the specified columns.

  • has_fractions_difference(): Constructor for creating condition function that checks the difference between the fractions reported in each specified column.

  • has_counts_difference(): Constructor for creating condition function that checks the difference between the counts reported in each specified column.

Note

Since most table specifications are worded positively, we name our constructor and condition functions positively, too. However, note that the result of keep_rows() says what should be pruned, to conform with the rtables::prune_table() interface.

Examples

# \donttest{
tab <- basic_table() %>%
  split_cols_by("ARM") %>%
  split_rows_by("RACE") %>%
  split_rows_by("STRATA1") %>%
  summarize_row_groups() %>%
  summarize_vars("COUNTRY", .stats = "count_fraction") %>%
  build_table(DM)
# }

# \donttest{
# `keep_rows`
is_non_empty <- !CombinationFunction(all_zero_or_na)
prune_table(tab, keep_rows(is_non_empty))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>     USA                      2 (7.4%)      1 (5%)       8 (25.8%)   
#>     BRA                      1 (3.7%)     4 (20%)        1 (3.2%)   
#>     PAK                     3 (11.1%)     2 (10%)        2 (6.5%)   
#>     NGA                     3 (11.1%)      1 (5%)        3 (9.7%)   
#>     RUS                      2 (7.4%)      1 (5%)        1 (3.2%)   
#>     JPN                         0          1 (5%)        2 (6.5%)   
#>     GBR                         0          1 (5%)        1 (3.2%)   
#>     CAN                      2 (7.4%)        0           1 (3.2%)   
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>     USA                      2 (8.3%)    5 (17.2%)       1 (4.5%)   
#>     BRA                     4 (16.7%)    3 (10.3%)       1 (4.5%)   
#>     PAK                      2 (8.3%)     2 (6.9%)      4 (18.2%)   
#>     NGA                      2 (8.3%)     1 (3.4%)      3 (13.6%)   
#>     RUS                      1 (4.2%)     1 (3.4%)       2 (9.1%)   
#>     JPN                         0        4 (13.8%)          0       
#>     GBR                      1 (4.2%)        0              0       
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#>     USA                     3 (10.7%)    3 (15.8%)      4 (12.9%)   
#>     BRA                      1 (3.6%)     1 (5.3%)      4 (12.9%)   
#>     PAK                      1 (3.6%)     1 (5.3%)       3 (9.7%)   
#>     NGA                     4 (14.3%)     1 (5.3%)       2 (6.5%)   
#>     RUS                     4 (14.3%)    2 (10.5%)       1 (3.2%)   
#>     JPN                      2 (7.1%)     1 (5.3%)       1 (3.2%)   
#> BLACK OR AFRICAN AMERICAN                                           
#>   A                          6 (5.0%)     7 (6.6%)       8 (6.2%)   
#>     CHN                      3 (50%)     3 (42.9%)      5 (62.5%)   
#>     USA                     2 (33.3%)    1 (14.3%)      1 (12.5%)   
#>     BRA                         0        1 (14.3%)          0       
#>     PAK                         0            0          1 (12.5%)   
#>     NGA                         0            0          1 (12.5%)   
#>     JPN                     1 (16.7%)        0              0       
#>     GBR                         0        2 (28.6%)          0       
#>   B                         10 (8.3%)     6 (5.7%)      12 (9.3%)   
#>     CHN                      3 (30%)     2 (33.3%)      8 (66.7%)   
#>     USA                      1 (10%)         0           1 (8.3%)   
#>     BRA                      2 (20%)     1 (16.7%)       1 (8.3%)   
#>     PAK                         0        1 (16.7%)          0       
#>     RUS                         0        1 (16.7%)          0       
#>     JPN                      2 (20%)         0           1 (8.3%)   
#>     GBR                      1 (10%)         0           1 (8.3%)   
#>     CAN                      1 (10%)     1 (16.7%)          0       
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
#>     USA                      1 (8.3%)    2 (18.2%)      1 (14.3%)   
#>     BRA                      1 (8.3%)    2 (18.2%)          0       
#>     PAK                      1 (8.3%)     1 (9.1%)      1 (14.3%)   
#>     NGA                         0         1 (9.1%)          0       
#>     RUS                      1 (8.3%)        0              0       
#> WHITE                                                               
#>   A                          3 (2.5%)     6 (5.7%)       6 (4.7%)   
#>     CHN                     2 (66.7%)    2 (33.3%)       3 (50%)    
#>     USA                     1 (33.3%)    1 (16.7%)          0       
#>     PAK                         0        1 (16.7%)      1 (16.7%)   
#>     NGA                         0        1 (16.7%)          0       
#>     RUS                         0            0          1 (16.7%)   
#>     JPN                         0        1 (16.7%)          0       
#>     CAN                         0            0          1 (16.7%)   
#>   B                          7 (5.8%)     5 (4.7%)       4 (3.1%)   
#>     CHN                     4 (57.1%)     1 (20%)        3 (75%)    
#>     USA                         0         1 (20%)           0       
#>     BRA                         0         1 (20%)           0       
#>     PAK                     1 (14.3%)        0              0       
#>     NGA                     1 (14.3%)        0              0       
#>     RUS                     1 (14.3%)        0           1 (25%)    
#>     JPN                         0         1 (20%)           0       
#>     CAN                         0         1 (20%)           0       
#>   C                          4 (3.3%)     3 (2.8%)       8 (6.2%)   
#>     CHN                      3 (75%)      3 (100%)       6 (75%)    
#>     USA                      1 (25%)         0          1 (12.5%)   
#>     JPN                         0            0          1 (12.5%)   
# }

# `keep_content_rows`
# \donttest{
more_than_twenty <- has_count_in_cols(atleast = 20L, col_names = names(tab))
prune_table(tab, keep_content_rows(more_than_twenty))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>     USA                      2 (7.4%)      1 (5%)       8 (25.8%)   
#>     BRA                      1 (3.7%)     4 (20%)        1 (3.2%)   
#>     PAK                     3 (11.1%)     2 (10%)        2 (6.5%)   
#>     NGA                     3 (11.1%)      1 (5%)        3 (9.7%)   
#>     RUS                      2 (7.4%)      1 (5%)        1 (3.2%)   
#>     JPN                         0          1 (5%)        2 (6.5%)   
#>     GBR                         0          1 (5%)        1 (3.2%)   
#>     CAN                      2 (7.4%)        0           1 (3.2%)   
#>     CHE                         0            0              0       
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>     USA                      2 (8.3%)    5 (17.2%)       1 (4.5%)   
#>     BRA                     4 (16.7%)    3 (10.3%)       1 (4.5%)   
#>     PAK                      2 (8.3%)     2 (6.9%)      4 (18.2%)   
#>     NGA                      2 (8.3%)     1 (3.4%)      3 (13.6%)   
#>     RUS                      1 (4.2%)     1 (3.4%)       2 (9.1%)   
#>     JPN                         0        4 (13.8%)          0       
#>     GBR                      1 (4.2%)        0              0       
#>     CAN                         0            0              0       
#>     CHE                         0            0              0       
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#>     USA                     3 (10.7%)    3 (15.8%)      4 (12.9%)   
#>     BRA                      1 (3.6%)     1 (5.3%)      4 (12.9%)   
#>     PAK                      1 (3.6%)     1 (5.3%)       3 (9.7%)   
#>     NGA                     4 (14.3%)     1 (5.3%)       2 (6.5%)   
#>     RUS                     4 (14.3%)    2 (10.5%)       1 (3.2%)   
#>     JPN                      2 (7.1%)     1 (5.3%)       1 (3.2%)   
#>     GBR                         0            0              0       
#>     CAN                         0            0              0       
#>     CHE                         0            0              0       
#> BLACK OR AFRICAN AMERICAN                                           
#>   A                          6 (5.0%)     7 (6.6%)       8 (6.2%)   
#>     CHN                      3 (50%)     3 (42.9%)      5 (62.5%)   
#>     USA                     2 (33.3%)    1 (14.3%)      1 (12.5%)   
#>     BRA                         0        1 (14.3%)          0       
#>     PAK                         0            0          1 (12.5%)   
#>     NGA                         0            0          1 (12.5%)   
#>     RUS                         0            0              0       
#>     JPN                     1 (16.7%)        0              0       
#>     GBR                         0        2 (28.6%)          0       
#>     CAN                         0            0              0       
#>     CHE                         0            0              0       
#>   B                         10 (8.3%)     6 (5.7%)      12 (9.3%)   
#>     CHN                      3 (30%)     2 (33.3%)      8 (66.7%)   
#>     USA                      1 (10%)         0           1 (8.3%)   
#>     BRA                      2 (20%)     1 (16.7%)       1 (8.3%)   
#>     PAK                         0        1 (16.7%)          0       
#>     NGA                         0            0              0       
#>     RUS                         0        1 (16.7%)          0       
#>     JPN                      2 (20%)         0           1 (8.3%)   
#>     GBR                      1 (10%)         0           1 (8.3%)   
#>     CAN                      1 (10%)     1 (16.7%)          0       
#>     CHE                         0            0              0       
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
#>     USA                      1 (8.3%)    2 (18.2%)      1 (14.3%)   
#>     BRA                      1 (8.3%)    2 (18.2%)          0       
#>     PAK                      1 (8.3%)     1 (9.1%)      1 (14.3%)   
#>     NGA                         0         1 (9.1%)          0       
#>     RUS                      1 (8.3%)        0              0       
#>     JPN                         0            0              0       
#>     GBR                         0            0              0       
#>     CAN                         0            0              0       
#>     CHE                         0            0              0       
# }

# \donttest{
more_than_one <- has_count_in_cols(atleast = 1L, col_names = names(tab))
prune_table(tab, keep_rows(more_than_one))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>     USA                      2 (7.4%)      1 (5%)       8 (25.8%)   
#>     BRA                      1 (3.7%)     4 (20%)        1 (3.2%)   
#>     PAK                     3 (11.1%)     2 (10%)        2 (6.5%)   
#>     NGA                     3 (11.1%)      1 (5%)        3 (9.7%)   
#>     RUS                      2 (7.4%)      1 (5%)        1 (3.2%)   
#>     JPN                         0          1 (5%)        2 (6.5%)   
#>     GBR                         0          1 (5%)        1 (3.2%)   
#>     CAN                      2 (7.4%)        0           1 (3.2%)   
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>     USA                      2 (8.3%)    5 (17.2%)       1 (4.5%)   
#>     BRA                     4 (16.7%)    3 (10.3%)       1 (4.5%)   
#>     PAK                      2 (8.3%)     2 (6.9%)      4 (18.2%)   
#>     NGA                      2 (8.3%)     1 (3.4%)      3 (13.6%)   
#>     RUS                      1 (4.2%)     1 (3.4%)       2 (9.1%)   
#>     JPN                         0        4 (13.8%)          0       
#>     GBR                      1 (4.2%)        0              0       
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#>     USA                     3 (10.7%)    3 (15.8%)      4 (12.9%)   
#>     BRA                      1 (3.6%)     1 (5.3%)      4 (12.9%)   
#>     PAK                      1 (3.6%)     1 (5.3%)       3 (9.7%)   
#>     NGA                     4 (14.3%)     1 (5.3%)       2 (6.5%)   
#>     RUS                     4 (14.3%)    2 (10.5%)       1 (3.2%)   
#>     JPN                      2 (7.1%)     1 (5.3%)       1 (3.2%)   
#> BLACK OR AFRICAN AMERICAN                                           
#>   A                          6 (5.0%)     7 (6.6%)       8 (6.2%)   
#>     CHN                      3 (50%)     3 (42.9%)      5 (62.5%)   
#>     USA                     2 (33.3%)    1 (14.3%)      1 (12.5%)   
#>     BRA                         0        1 (14.3%)          0       
#>     PAK                         0            0          1 (12.5%)   
#>     NGA                         0            0          1 (12.5%)   
#>     JPN                     1 (16.7%)        0              0       
#>     GBR                         0        2 (28.6%)          0       
#>   B                         10 (8.3%)     6 (5.7%)      12 (9.3%)   
#>     CHN                      3 (30%)     2 (33.3%)      8 (66.7%)   
#>     USA                      1 (10%)         0           1 (8.3%)   
#>     BRA                      2 (20%)     1 (16.7%)       1 (8.3%)   
#>     PAK                         0        1 (16.7%)          0       
#>     RUS                         0        1 (16.7%)          0       
#>     JPN                      2 (20%)         0           1 (8.3%)   
#>     GBR                      1 (10%)         0           1 (8.3%)   
#>     CAN                      1 (10%)     1 (16.7%)          0       
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
#>     USA                      1 (8.3%)    2 (18.2%)      1 (14.3%)   
#>     BRA                      1 (8.3%)    2 (18.2%)          0       
#>     PAK                      1 (8.3%)     1 (9.1%)      1 (14.3%)   
#>     NGA                         0         1 (9.1%)          0       
#>     RUS                      1 (8.3%)        0              0       
#> WHITE                                                               
#>   A                          3 (2.5%)     6 (5.7%)       6 (4.7%)   
#>     CHN                     2 (66.7%)    2 (33.3%)       3 (50%)    
#>     USA                     1 (33.3%)    1 (16.7%)          0       
#>     PAK                         0        1 (16.7%)      1 (16.7%)   
#>     NGA                         0        1 (16.7%)          0       
#>     RUS                         0            0          1 (16.7%)   
#>     JPN                         0        1 (16.7%)          0       
#>     CAN                         0            0          1 (16.7%)   
#>   B                          7 (5.8%)     5 (4.7%)       4 (3.1%)   
#>     CHN                     4 (57.1%)     1 (20%)        3 (75%)    
#>     USA                         0         1 (20%)           0       
#>     BRA                         0         1 (20%)           0       
#>     PAK                     1 (14.3%)        0              0       
#>     NGA                     1 (14.3%)        0              0       
#>     RUS                     1 (14.3%)        0           1 (25%)    
#>     JPN                         0         1 (20%)           0       
#>     CAN                         0         1 (20%)           0       
#>   C                          4 (3.3%)     3 (2.8%)       8 (6.2%)   
#>     CHN                      3 (75%)      3 (100%)       6 (75%)    
#>     USA                      1 (25%)         0          1 (12.5%)   
#>     JPN                         0            0          1 (12.5%)   
# }

# \donttest{
# `has_count_in_any_col`
any_more_than_one <- has_count_in_any_col(atleast = 1L, col_names = names(tab))
prune_table(tab, keep_rows(any_more_than_one))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>     USA                      2 (7.4%)      1 (5%)       8 (25.8%)   
#>     BRA                      1 (3.7%)     4 (20%)        1 (3.2%)   
#>     PAK                     3 (11.1%)     2 (10%)        2 (6.5%)   
#>     NGA                     3 (11.1%)      1 (5%)        3 (9.7%)   
#>     RUS                      2 (7.4%)      1 (5%)        1 (3.2%)   
#>     JPN                         0          1 (5%)        2 (6.5%)   
#>     GBR                         0          1 (5%)        1 (3.2%)   
#>     CAN                      2 (7.4%)        0           1 (3.2%)   
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>     USA                      2 (8.3%)    5 (17.2%)       1 (4.5%)   
#>     BRA                     4 (16.7%)    3 (10.3%)       1 (4.5%)   
#>     PAK                      2 (8.3%)     2 (6.9%)      4 (18.2%)   
#>     NGA                      2 (8.3%)     1 (3.4%)      3 (13.6%)   
#>     RUS                      1 (4.2%)     1 (3.4%)       2 (9.1%)   
#>     JPN                         0        4 (13.8%)          0       
#>     GBR                      1 (4.2%)        0              0       
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#>     USA                     3 (10.7%)    3 (15.8%)      4 (12.9%)   
#>     BRA                      1 (3.6%)     1 (5.3%)      4 (12.9%)   
#>     PAK                      1 (3.6%)     1 (5.3%)       3 (9.7%)   
#>     NGA                     4 (14.3%)     1 (5.3%)       2 (6.5%)   
#>     RUS                     4 (14.3%)    2 (10.5%)       1 (3.2%)   
#>     JPN                      2 (7.1%)     1 (5.3%)       1 (3.2%)   
#> BLACK OR AFRICAN AMERICAN                                           
#>   A                          6 (5.0%)     7 (6.6%)       8 (6.2%)   
#>     CHN                      3 (50%)     3 (42.9%)      5 (62.5%)   
#>     USA                     2 (33.3%)    1 (14.3%)      1 (12.5%)   
#>     BRA                         0        1 (14.3%)          0       
#>     PAK                         0            0          1 (12.5%)   
#>     NGA                         0            0          1 (12.5%)   
#>     JPN                     1 (16.7%)        0              0       
#>     GBR                         0        2 (28.6%)          0       
#>   B                         10 (8.3%)     6 (5.7%)      12 (9.3%)   
#>     CHN                      3 (30%)     2 (33.3%)      8 (66.7%)   
#>     USA                      1 (10%)         0           1 (8.3%)   
#>     BRA                      2 (20%)     1 (16.7%)       1 (8.3%)   
#>     PAK                         0        1 (16.7%)          0       
#>     RUS                         0        1 (16.7%)          0       
#>     JPN                      2 (20%)         0           1 (8.3%)   
#>     GBR                      1 (10%)         0           1 (8.3%)   
#>     CAN                      1 (10%)     1 (16.7%)          0       
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
#>     USA                      1 (8.3%)    2 (18.2%)      1 (14.3%)   
#>     BRA                      1 (8.3%)    2 (18.2%)          0       
#>     PAK                      1 (8.3%)     1 (9.1%)      1 (14.3%)   
#>     NGA                         0         1 (9.1%)          0       
#>     RUS                      1 (8.3%)        0              0       
#> WHITE                                                               
#>   A                          3 (2.5%)     6 (5.7%)       6 (4.7%)   
#>     CHN                     2 (66.7%)    2 (33.3%)       3 (50%)    
#>     USA                     1 (33.3%)    1 (16.7%)          0       
#>     PAK                         0        1 (16.7%)      1 (16.7%)   
#>     NGA                         0        1 (16.7%)          0       
#>     RUS                         0            0          1 (16.7%)   
#>     JPN                         0        1 (16.7%)          0       
#>     CAN                         0            0          1 (16.7%)   
#>   B                          7 (5.8%)     5 (4.7%)       4 (3.1%)   
#>     CHN                     4 (57.1%)     1 (20%)        3 (75%)    
#>     USA                         0         1 (20%)           0       
#>     BRA                         0         1 (20%)           0       
#>     PAK                     1 (14.3%)        0              0       
#>     NGA                     1 (14.3%)        0              0       
#>     RUS                     1 (14.3%)        0           1 (25%)    
#>     JPN                         0         1 (20%)           0       
#>     CAN                         0         1 (20%)           0       
#>   C                          4 (3.3%)     3 (2.8%)       8 (6.2%)   
#>     CHN                      3 (75%)      3 (100%)       6 (75%)    
#>     USA                      1 (25%)         0          1 (12.5%)   
#>     JPN                         0            0          1 (12.5%)   
# }

# \donttest{
# `has_fraction_in_cols`
more_than_five_percent <- has_fraction_in_cols(atleast = 0.05, col_names = names(tab))
prune_table(tab, keep_rows(more_than_five_percent))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#> BLACK OR AFRICAN AMERICAN                                           
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
# }

# \donttest{
# `has_fraction_in_any_col`
any_atleast_five_percent <- has_fraction_in_any_col(atleast = 0.05, col_names = names(tab))
prune_table(tab, keep_rows(more_than_five_percent))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#> BLACK OR AFRICAN AMERICAN                                           
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
# }

# \donttest{
# `has_fractions_difference`
more_than_five_percent_diff <- has_fractions_difference(atleast = 0.05, col_names = names(tab))
prune_table(tab, keep_rows(more_than_five_percent_diff))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>     USA                      2 (7.4%)      1 (5%)       8 (25.8%)   
#>     BRA                      1 (3.7%)     4 (20%)        1 (3.2%)   
#>     NGA                     3 (11.1%)      1 (5%)        3 (9.7%)   
#>     JPN                         0          1 (5%)        2 (6.5%)   
#>     GBR                         0          1 (5%)        1 (3.2%)   
#>     CAN                      2 (7.4%)        0           1 (3.2%)   
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>     USA                      2 (8.3%)    5 (17.2%)       1 (4.5%)   
#>     BRA                     4 (16.7%)    3 (10.3%)       1 (4.5%)   
#>     PAK                      2 (8.3%)     2 (6.9%)      4 (18.2%)   
#>     NGA                      2 (8.3%)     1 (3.4%)      3 (13.6%)   
#>     RUS                      1 (4.2%)     1 (3.4%)       2 (9.1%)   
#>     JPN                         0        4 (13.8%)          0       
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#>     USA                     3 (10.7%)    3 (15.8%)      4 (12.9%)   
#>     BRA                      1 (3.6%)     1 (5.3%)      4 (12.9%)   
#>     PAK                      1 (3.6%)     1 (5.3%)       3 (9.7%)   
#>     NGA                     4 (14.3%)     1 (5.3%)       2 (6.5%)   
#>     RUS                     4 (14.3%)    2 (10.5%)       1 (3.2%)   
#> BLACK OR AFRICAN AMERICAN                                           
#>   A                          6 (5.0%)     7 (6.6%)       8 (6.2%)   
#>     CHN                      3 (50%)     3 (42.9%)      5 (62.5%)   
#>     USA                     2 (33.3%)    1 (14.3%)      1 (12.5%)   
#>     BRA                         0        1 (14.3%)          0       
#>     PAK                         0            0          1 (12.5%)   
#>     NGA                         0            0          1 (12.5%)   
#>     JPN                     1 (16.7%)        0              0       
#>     GBR                         0        2 (28.6%)          0       
#>   B                         10 (8.3%)     6 (5.7%)      12 (9.3%)   
#>     CHN                      3 (30%)     2 (33.3%)      8 (66.7%)   
#>     USA                      1 (10%)         0           1 (8.3%)   
#>     BRA                      2 (20%)     1 (16.7%)       1 (8.3%)   
#>     PAK                         0        1 (16.7%)          0       
#>     RUS                         0        1 (16.7%)          0       
#>     JPN                      2 (20%)         0           1 (8.3%)   
#>     GBR                      1 (10%)         0           1 (8.3%)   
#>     CAN                      1 (10%)     1 (16.7%)          0       
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
#>     USA                      1 (8.3%)    2 (18.2%)      1 (14.3%)   
#>     BRA                      1 (8.3%)    2 (18.2%)          0       
#>     PAK                      1 (8.3%)     1 (9.1%)      1 (14.3%)   
#>     NGA                         0         1 (9.1%)          0       
#>     RUS                      1 (8.3%)        0              0       
#> WHITE                                                               
#>   A                          3 (2.5%)     6 (5.7%)       6 (4.7%)   
#>     CHN                     2 (66.7%)    2 (33.3%)       3 (50%)    
#>     USA                     1 (33.3%)    1 (16.7%)          0       
#>     PAK                         0        1 (16.7%)      1 (16.7%)   
#>     NGA                         0        1 (16.7%)          0       
#>     RUS                         0            0          1 (16.7%)   
#>     JPN                         0        1 (16.7%)          0       
#>     CAN                         0            0          1 (16.7%)   
#>   B                          7 (5.8%)     5 (4.7%)       4 (3.1%)   
#>     CHN                     4 (57.1%)     1 (20%)        3 (75%)    
#>     USA                         0         1 (20%)           0       
#>     BRA                         0         1 (20%)           0       
#>     PAK                     1 (14.3%)        0              0       
#>     NGA                     1 (14.3%)        0              0       
#>     RUS                     1 (14.3%)        0           1 (25%)    
#>     JPN                         0         1 (20%)           0       
#>     CAN                         0         1 (20%)           0       
#>   C                          4 (3.3%)     3 (2.8%)       8 (6.2%)   
#>     CHN                      3 (75%)      3 (100%)       6 (75%)    
#>     USA                      1 (25%)         0          1 (12.5%)   
#>     JPN                         0            0          1 (12.5%)   
# }

# \donttest{
more_than_one_diff <- has_counts_difference(atleast = 1L, col_names = names(tab))
prune_table(tab, keep_rows(more_than_one_diff))
#>                             A: Drug X    B: Placebo   C: Combination
#> ————————————————————————————————————————————————————————————————————
#> ASIAN                                                               
#>   A                         27 (22.3%)   20 (18.9%)     31 (24.0%)  
#>     CHN                     14 (51.9%)    9 (45%)       12 (38.7%)  
#>     USA                      2 (7.4%)      1 (5%)       8 (25.8%)   
#>     BRA                      1 (3.7%)     4 (20%)        1 (3.2%)   
#>     PAK                     3 (11.1%)     2 (10%)        2 (6.5%)   
#>     NGA                     3 (11.1%)      1 (5%)        3 (9.7%)   
#>     RUS                      2 (7.4%)      1 (5%)        1 (3.2%)   
#>     JPN                         0          1 (5%)        2 (6.5%)   
#>     GBR                         0          1 (5%)        1 (3.2%)   
#>     CAN                      2 (7.4%)        0           1 (3.2%)   
#>   B                         24 (19.8%)   29 (27.4%)     22 (17.1%)  
#>     CHN                      12 (50%)    13 (44.8%)      11 (50%)   
#>     USA                      2 (8.3%)    5 (17.2%)       1 (4.5%)   
#>     BRA                     4 (16.7%)    3 (10.3%)       1 (4.5%)   
#>     PAK                      2 (8.3%)     2 (6.9%)      4 (18.2%)   
#>     NGA                      2 (8.3%)     1 (3.4%)      3 (13.6%)   
#>     RUS                      1 (4.2%)     1 (3.4%)       2 (9.1%)   
#>     JPN                         0        4 (13.8%)          0       
#>     GBR                      1 (4.2%)        0              0       
#>   C                         28 (23.1%)   19 (17.9%)     31 (24.0%)  
#>     CHN                     13 (46.4%)   10 (52.6%)     16 (51.6%)  
#>     USA                     3 (10.7%)    3 (15.8%)      4 (12.9%)   
#>     BRA                      1 (3.6%)     1 (5.3%)      4 (12.9%)   
#>     PAK                      1 (3.6%)     1 (5.3%)       3 (9.7%)   
#>     NGA                     4 (14.3%)     1 (5.3%)       2 (6.5%)   
#>     RUS                     4 (14.3%)    2 (10.5%)       1 (3.2%)   
#>     JPN                      2 (7.1%)     1 (5.3%)       1 (3.2%)   
#> BLACK OR AFRICAN AMERICAN                                           
#>   A                          6 (5.0%)     7 (6.6%)       8 (6.2%)   
#>     CHN                      3 (50%)     3 (42.9%)      5 (62.5%)   
#>     USA                     2 (33.3%)    1 (14.3%)      1 (12.5%)   
#>     BRA                         0        1 (14.3%)          0       
#>     PAK                         0            0          1 (12.5%)   
#>     NGA                         0            0          1 (12.5%)   
#>     JPN                     1 (16.7%)        0              0       
#>     GBR                         0        2 (28.6%)          0       
#>   B                         10 (8.3%)     6 (5.7%)      12 (9.3%)   
#>     CHN                      3 (30%)     2 (33.3%)      8 (66.7%)   
#>     USA                      1 (10%)         0           1 (8.3%)   
#>     BRA                      2 (20%)     1 (16.7%)       1 (8.3%)   
#>     PAK                         0        1 (16.7%)          0       
#>     RUS                         0        1 (16.7%)          0       
#>     JPN                      2 (20%)         0           1 (8.3%)   
#>     GBR                      1 (10%)         0           1 (8.3%)   
#>     CAN                      1 (10%)     1 (16.7%)          0       
#>   C                         12 (9.9%)    11 (10.4%)      7 (5.4%)   
#>     CHN                     8 (66.7%)    5 (45.5%)      5 (71.4%)   
#>     USA                      1 (8.3%)    2 (18.2%)      1 (14.3%)   
#>     BRA                      1 (8.3%)    2 (18.2%)          0       
#>     NGA                         0         1 (9.1%)          0       
#>     RUS                      1 (8.3%)        0              0       
#> WHITE                                                               
#>   A                          3 (2.5%)     6 (5.7%)       6 (4.7%)   
#>     CHN                     2 (66.7%)    2 (33.3%)       3 (50%)    
#>     USA                     1 (33.3%)    1 (16.7%)          0       
#>     PAK                         0        1 (16.7%)      1 (16.7%)   
#>     NGA                         0        1 (16.7%)          0       
#>     RUS                         0            0          1 (16.7%)   
#>     JPN                         0        1 (16.7%)          0       
#>     CAN                         0            0          1 (16.7%)   
#>   B                          7 (5.8%)     5 (4.7%)       4 (3.1%)   
#>     CHN                     4 (57.1%)     1 (20%)        3 (75%)    
#>     USA                         0         1 (20%)           0       
#>     BRA                         0         1 (20%)           0       
#>     PAK                     1 (14.3%)        0              0       
#>     NGA                     1 (14.3%)        0              0       
#>     RUS                     1 (14.3%)        0           1 (25%)    
#>     JPN                         0         1 (20%)           0       
#>     CAN                         0         1 (20%)           0       
#>   C                          4 (3.3%)     3 (2.8%)       8 (6.2%)   
#>     CHN                      3 (75%)      3 (100%)       6 (75%)    
#>     USA                      1 (25%)         0          1 (12.5%)   
#>     JPN                         0            0          1 (12.5%)   
# }