Usage
s_count_values(
  x,
  values,
  na.rm = TRUE,
  .N_col,
  .N_row,
  denom = c("n", "N_row", "N_col")
)
# S3 method for character
s_count_values(x, values = "Y", na.rm = TRUE, ...)
# S3 method for factor
s_count_values(x, values = "Y", ...)
# S3 method for logical
s_count_values(x, values = TRUE, ...)
a_count_values(
  x,
  values,
  na.rm = TRUE,
  .N_col,
  .N_row,
  denom = c("n", "N_row", "N_col")
)
count_values(
  lyt,
  vars,
  values,
  ...,
  table_names = vars,
  .stats = "count_fraction",
  .formats = NULL,
  .labels = c(count_fraction = paste(values, collapse = ", ")),
  .indent_mods = NULL
)Arguments
- x
- ( - numeric)
 vector of numbers we want to analyze.
- values
- ( - character)
 specific values that should be counted.
- na.rm
- ( - flag)
 whether- NAvalues should be removed from- xprior to analysis.
- .N_col
- ( - count)
 row-wise N (row group count) for the group of observations being analyzed (i.e. with no column-based subsetting) that is passed by- rtables.
- .N_row
- ( - count)
 column-wise N (column count) for the full column that is passed by- rtables.
- denom
- 
( string)
 choice of denominator for proportion. Options are:- n: number of values in this row and column intersection.
- N_row: total number of values in this row across columns.
- N_col: total number of values in this column across rows.
 
- ...
- additional arguments for the lower level functions. 
- lyt
- ( - layout)
 input layout where analyses will be added to.
- vars
- ( - character)
 variable names for the primary analysis variable to be iterated over.
- table_names
- ( - character)
 this can be customized in case that the same- varsare analyzed multiple times, to avoid warnings from- rtables.
- .stats
- ( - character)
 statistics to select for the table.
- .formats
- (named - characteror- list)
 formats for the statistics.
- .labels
- (named - character)
 labels for the statistics (without indent).
- .indent_mods
- (named - integer)
 indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.
Value
- s_count_values()returns output of- s_summary()for specified values of a non-numeric variable.
- a_count_values()returns the corresponding list with formatted- rtables::CellValue().
- count_values()returns a layout object suitable for passing to further layouting functions, or to- rtables::build_table(). Adding this function to an- rtablelayout will add formatted rows containing the statistics from- s_count_values()to the table layout.
Functions
- s_count_values(): S3 generic function to count values.
- s_count_values(character): Method for- characterclass.
- s_count_values(factor): Method for- factorclass. This makes an automatic conversion to- characterand then forwards to the method for characters.
- s_count_values(logical): Method for- logicalclass.
- a_count_values(): Formatted analysis function which is used as- afunin- count_values().
- count_values(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper for- rtables::analyze().
Note
- For - factorvariables,- s_count_valueschecks whether- valuesare all included in the levels of- xand fails otherwise.
- For - count_values(), variable labels are shown when there is more than one element in- vars, otherwise they are hidden.
Examples
# `s_count_values.character`
s_count_values(x = c("a", "b", "a"), values = "a")
#> $n
#> [1] 3
#> 
#> $count
#> [1] 2
#> 
#> $count_fraction
#> [1] 2.0000000 0.6666667
#> 
#> $n_blq
#> [1] 0
#> 
s_count_values(x = c("a", "b", "a", NA, NA), values = "b", na.rm = FALSE)
#> $n
#> [1] 5
#> 
#> $count
#> [1] 1
#> 
#> $count_fraction
#> [1] 1.0 0.2
#> 
#> $n_blq
#> [1] 0
#> 
# `s_count_values.factor`
s_count_values(x = factor(c("a", "b", "a")), values = "a")
#> $n
#> [1] 3
#> 
#> $count
#> [1] 2
#> 
#> $count_fraction
#> [1] 2.0000000 0.6666667
#> 
#> $n_blq
#> [1] 0
#> 
# `s_count_values.logical`
s_count_values(x = c(TRUE, FALSE, TRUE))
#> $n
#> [1] 3
#> 
#> $count
#> [1] 2
#> 
#> $count_fraction
#> [1] 2.0000000 0.6666667
#> 
#> $n_blq
#> [1] 0
#> 
# `a_count_values`
a_count_values(x = factor(c("a", "b", "a")), values = "a", .N_col = 10, .N_row = 10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#>         row_name formatted_cell indent_mod      row_label
#> 1              n              3          0              n
#> 2          count              2          0          count
#> 3 count_fraction     2 (66.67%)          0 count_fraction
#> 4          n_blq              0          0          n_blq
# `count_values`
basic_table() %>%
  count_values("Species", values = "setosa") %>%
  build_table(iris)
#>            all obs  
#> ————————————————————
#> setosa   50 (33.33%)