Usage
s_coxph_pairwise(
df,
.ref_group,
.in_ref_col,
.var,
is_event,
strat = NULL,
control = control_coxph()
)
a_coxph_pairwise(
df,
.ref_group,
.in_ref_col,
.var,
is_event,
strat = NULL,
control = control_coxph()
)
coxph_pairwise(
lyt,
vars,
...,
var_labels = "CoxPH",
show_labels = "visible",
table_names = vars,
.stats = c("pvalue", "hr", "hr_ci"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
Arguments
- df
(
data.frame
)
data set containing all analysis variables.- .ref_group
(
data.frame
orvector
)
the data corresponding to the reference group.- .in_ref_col
(
logical
)TRUE
when working with the reference level,FALSE
otherwise.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- is_event
(
logical
)TRUE
if event,FALSE
if time to event is censored.- strat
(
character
orNULL
)
variable names indicating stratification factors.- control
-
(
list
)
parameters for comparison details, specified by using the helper functioncontrol_coxph()
. Some possible parameter options are:pval_method
(string
)
p-value method for testing hazard ratio = 1. Default method is "log-rank" which comes fromsurvival::survdiff()
, can also be set to "wald" or "likelihood" (fromsurvival::coxph()
).ties
(string
)
specifying the method for tie handling. Default is "efron", can also be set to "breslow" or "exact". See more insurvival::coxph()
conf_level
(proportion
)
confidence level of the interval for HR.
- lyt
(
layout
)
input layout where analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- ...
additional arguments for the lower level functions.
- var_labels
(
character
)
character for label.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character
)
this can be customized in case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels.
Value
-
s_coxph_pairwise()
returns the statistics:pvalue
: p-value to test HR = 1.hr
: Hazard ratio.hr_ci
: Confidence interval for hazard ratio.n_tot
: Total number of observations.n_tot_events
: Total number of events.
a_coxph_pairwise()
returns the corresponding list with formattedrtables::CellValue()
.
coxph_pairwise()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_coxph_pairwise()
to the table layout.
Functions
s_coxph_pairwise()
: Statistics function which analyzes HR, CIs of HR and p-value of a coxph model.a_coxph_pairwise()
: Formatted analysis function which is used asafun
incoxph_pairwise()
.coxph_pairwise()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.
Examples
library(dplyr)
adtte_f <- tern_ex_adtte %>%
filter(PARAMCD == "OS") %>%
mutate(is_event = CNSR == 0)
df <- adtte_f %>%
filter(ARMCD == "ARM A")
df_ref_group <- adtte_f %>%
filter(ARMCD == "ARM B")
# Internal function - s_coxph_pairwise
if (FALSE) {
s_coxph_pairwise(df, df_ref_group, .in_ref_col = FALSE, .var = "AVAL", is_event = "is_event")
}
# Internal function - a_coxph_pairwise
if (FALSE) {
a_coxph_pairwise(df, df_ref_group, .in_ref_col = FALSE, .var = "AVAL", is_event = "is_event")
}
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
coxph_pairwise(
vars = "AVAL",
is_event = "is_event",
var_labels = "Unstratified Analysis"
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ————————————————————————————————————————————————————————————
#> Unstratified Analysis
#> p-value (log-rank) 0.0905 0.0086
#> Hazard Ratio 1.41 1.81
#> 95% CI (0.95, 2.09) (1.16, 2.84)
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
coxph_pairwise(
vars = "AVAL",
is_event = "is_event",
var_labels = "Stratified Analysis",
strat = "SEX",
control = control_coxph(pval_method = "wald")
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ——————————————————————————————————————————————————————————
#> Stratified Analysis
#> p-value (wald) 0.0784 0.0066
#> Hazard Ratio 1.44 1.89
#> 95% CI (0.96, 2.15) (1.19, 2.98)