Prepares Survival Data for Population Subgroups in Data Frames
Source:R/survival_duration_subgroups.R
extract_survival_subgroups.Rd
Prepares estimates of median survival times and treatment hazard ratios for population subgroups in
data frames. Simple wrapper for h_survtime_subgroups_df()
and h_coxph_subgroups_df()
.
Result is a list of two data frames: survtime
and hr
.
variables
corresponds to the names of variables found in data
, passed as a named list and requires elements
tte
, is_event
, arm
and optionally subgroups
and strat
. groups_lists
optionally specifies
groupings for subgroups
variables.
Usage
extract_survival_subgroups(
variables,
data,
groups_lists = list(),
control = control_coxph(),
label_all = "All Patients"
)
Arguments
- variables
(named
list
ofstring
)
list of additional analysis variables.- data
(
data.frame
)
the dataset containing the variables to summarize.- groups_lists
(named
list
oflist
)
optionally contains for eachsubgroups
variable a list, which specifies the new group levels via the names and the levels that belong to it in the character vectors that are elements of the list.- control
-
(
list
)
parameters for comparison details, specified by using the helper functioncontrol_coxph()
. Some possible parameter options are:pval_method
(string
)
p-value method for testing hazard ratio = 1. Default method is "log-rank" which comes fromsurvival::survdiff()
, can also be set to "wald" or "likelihood" (fromsurvival::coxph()
).ties
(string
)
specifying the method for tie handling. Default is "efron", can also be set to "breslow" or "exact". See more insurvival::coxph()
conf_level
(proportion
)
confidence level of the interval for HR.
- label_all
(
string
)
label for the total population analysis.
Examples
library(dplyr)
library(forcats)
adtte <- tern_ex_adtte
adtte_labels <- formatters::var_labels(adtte)
adtte_f <- adtte %>%
filter(
PARAMCD == "OS",
ARM %in% c("B: Placebo", "A: Drug X"),
SEX %in% c("M", "F")
) %>%
mutate(
# Reorder levels of ARM to display reference arm before treatment arm.
ARM = droplevels(fct_relevel(ARM, "B: Placebo")),
SEX = droplevels(SEX),
AVALU = as.character(AVALU),
is_event = CNSR == 0
)
labels <- c(
"ARM" = adtte_labels[["ARM"]],
"SEX" = adtte_labels[["SEX"]],
"AVALU" = adtte_labels[["AVALU"]],
"is_event" = "Event Flag"
)
formatters::var_labels(adtte_f)[names(labels)] <- labels
df <- extract_survival_subgroups(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM", subgroups = c("SEX", "BMRKR2")
),
data = adtte_f
)
df
#> $survtime
#> arm n n_events median subgroup var
#> 1 B: Placebo 73 57 727.8043 All Patients ALL
#> 2 A: Drug X 69 44 974.6402 All Patients ALL
#> 3 B: Placebo 40 31 599.1772 F SEX
#> 4 A: Drug X 38 24 1016.2982 F SEX
#> 5 B: Placebo 33 26 888.4916 M SEX
#> 6 A: Drug X 31 20 974.6402 M SEX
#> 7 B: Placebo 24 21 735.4722 LOW BMRKR2
#> 8 A: Drug X 26 15 974.6402 LOW BMRKR2
#> 9 B: Placebo 23 14 731.8352 MEDIUM BMRKR2
#> 10 A: Drug X 26 17 964.2197 MEDIUM BMRKR2
#> 11 B: Placebo 26 22 654.8245 HIGH BMRKR2
#> 12 A: Drug X 17 12 1016.2982 HIGH BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Sex analysis
#> 4 Sex analysis
#> 5 Sex analysis
#> 6 Sex analysis
#> 7 Continuous Level Biomarker 2 analysis
#> 8 Continuous Level Biomarker 2 analysis
#> 9 Continuous Level Biomarker 2 analysis
#> 10 Continuous Level Biomarker 2 analysis
#> 11 Continuous Level Biomarker 2 analysis
#> 12 Continuous Level Biomarker 2 analysis
#>
#> $hr
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 142 101 0.7108557 0.4779138 1.0573368 0.95 0.09049511
#> 2 78 55 0.5595391 0.3246658 0.9643271 0.95 0.03411759
#> 3 64 46 0.9102874 0.5032732 1.6464678 0.95 0.75582028
#> 4 50 36 0.7617717 0.3854349 1.5055617 0.95 0.43236030
#> 5 49 31 0.7651261 0.3641277 1.6077269 0.95 0.47860004
#> 6 43 34 0.6662356 0.3257413 1.3626456 0.95 0.26285846
#> pval_label subgroup var var_label row_type
#> 1 p-value (log-rank) All Patients ALL All Patients content
#> 2 p-value (log-rank) F SEX Sex analysis
#> 3 p-value (log-rank) M SEX Sex analysis
#> 4 p-value (log-rank) LOW BMRKR2 Continuous Level Biomarker 2 analysis
#> 5 p-value (log-rank) MEDIUM BMRKR2 Continuous Level Biomarker 2 analysis
#> 6 p-value (log-rank) HIGH BMRKR2 Continuous Level Biomarker 2 analysis
#>
df_grouped <- extract_survival_subgroups(
variables = list(
tte = "AVAL",
is_event = "is_event",
arm = "ARM", subgroups = c("SEX", "BMRKR2")
),
data = adtte_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
df_grouped
#> $survtime
#> arm n n_events median subgroup var
#> 1 B: Placebo 73 57 727.8043 All Patients ALL
#> 2 A: Drug X 69 44 974.6402 All Patients ALL
#> 3 B: Placebo 40 31 599.1772 F SEX
#> 4 A: Drug X 38 24 1016.2982 F SEX
#> 5 B: Placebo 33 26 888.4916 M SEX
#> 6 A: Drug X 31 20 974.6402 M SEX
#> 7 B: Placebo 24 21 735.4722 low BMRKR2
#> 8 A: Drug X 26 15 974.6402 low BMRKR2
#> 9 B: Placebo 47 35 735.4722 low/medium BMRKR2
#> 10 A: Drug X 52 32 964.2197 low/medium BMRKR2
#> 11 B: Placebo 73 57 727.8043 low/medium/high BMRKR2
#> 12 A: Drug X 69 44 974.6402 low/medium/high BMRKR2
#> var_label row_type
#> 1 All Patients content
#> 2 All Patients content
#> 3 Sex analysis
#> 4 Sex analysis
#> 5 Sex analysis
#> 6 Sex analysis
#> 7 Continuous Level Biomarker 2 analysis
#> 8 Continuous Level Biomarker 2 analysis
#> 9 Continuous Level Biomarker 2 analysis
#> 10 Continuous Level Biomarker 2 analysis
#> 11 Continuous Level Biomarker 2 analysis
#> 12 Continuous Level Biomarker 2 analysis
#>
#> $hr
#> arm n_tot n_tot_events hr lcl ucl conf_level pval
#> 1 142 101 0.7108557 0.4779138 1.0573368 0.95 0.09049511
#> 2 78 55 0.5595391 0.3246658 0.9643271 0.95 0.03411759
#> 3 64 46 0.9102874 0.5032732 1.6464678 0.95 0.75582028
#> 4 50 36 0.7617717 0.3854349 1.5055617 0.95 0.43236030
#> 5 99 67 0.7472958 0.4600419 1.2139136 0.95 0.23764314
#> 6 142 101 0.7108557 0.4779138 1.0573368 0.95 0.09049511
#> pval_label subgroup var var_label
#> 1 p-value (log-rank) All Patients ALL All Patients
#> 2 p-value (log-rank) F SEX Sex
#> 3 p-value (log-rank) M SEX Sex
#> 4 p-value (log-rank) low BMRKR2 Continuous Level Biomarker 2
#> 5 p-value (log-rank) low/medium BMRKR2 Continuous Level Biomarker 2
#> 6 p-value (log-rank) low/medium/high BMRKR2 Continuous Level Biomarker 2
#> row_type
#> 1 content
#> 2 analysis
#> 3 analysis
#> 4 analysis
#> 5 analysis
#> 6 analysis
#>