This function estimates the hazard ratios between arms when an interaction variable is given with specific values.
Arguments
- variable, given
Names of two variable in interaction. We seek the estimation of the levels of
variable
given the levels ofgiven
.- lvl_var, lvl_given
corresponding levels has given by
levels
.- coef
Numeric of estimated coefficients.
- mmat
A name numeric filled with 0 used as template to obtain the design matrix.
- vcov
Variance-covariance matrix of underlying model.
- conf_level
Single numeric for the confidence level of estimate intervals.
Value
A list of matrix (one per level of variable) with rows corresponding to the combinations of
variable
and given
, with columns:
- coef_hat
Estimation of the coefficient.
- coef_se
Standard error of the estimation.
- hr
Hazard ratio.
- lcl, ucl
Lower/upper confidence limit of the hazard ratio.
Details
Given the cox regression investigating the effect of Arm (A, B, C; reference A) and Sex (F, M; reference Female). The model is abbreviated: y ~ Arm + Sex + Arm x Sex. The cox regression estimates the coefficients along with a variance-covariance matrix for:
b1 (arm b), b2 (arm c)
b3 (sex m)
b4 (arm b: sex m), b5 (arm c: sex m)
Given that I want an estimation of the Hazard Ratio for arm C/sex M, the estimation will be given in reference to arm A/Sex M by exp(b2 + b3 + b5)/ exp(b3) = exp(b2 + b5), therefore the interaction coefficient is given by b2 + b5 while the standard error is obtained as $1.96 * sqrt(Var b2 + Var b5 + 2 * covariance (b2,b5))$ for a confidence level of 0.95.
Examples
library(dplyr)
library(survival)
ADSL <- tern_ex_adsl %>%
filter(SEX %in% c("F", "M"))
adtte <- tern_ex_adtte %>% filter(PARAMCD == "PFS")
adtte$ARMCD <- droplevels(adtte$ARMCD)
adtte$SEX <- droplevels(adtte$SEX)
mod <- coxph(
formula = Surv(time = AVAL, event = 1 - CNSR) ~ (SEX + ARMCD)^2,
data = adtte
)
mmat <- stats::model.matrix(mod)[1, ]
mmat[!mmat == 0] <- 0
# Internal function - estimate_coef
if (FALSE) {
estimate_coef(
variable = "ARMCD", given = "SEX", lvl_var = "ARM A", lvl_given = "M",
coef = stats::coef(mod), mmat = mmat, vcov = stats::vcov(mod), conf_level = .95
)
}