Count Patients with Marked Laboratory Abnormalities
Source:R/abnormal_by_marked.R
abnormal_by_marked.RdPrimary analysis variable .var indicates whether single, replicated
or last marked laboratory abnormality was observed (factor).
Additional analysis variables are id (character or factor) and direction indicating
the direction of the abnormality (factor).
Denominator is number of patients with at least one valid measurement during
For
Single, not lastandLast or replicated: Numerator is number of patients withSingle, not lastandLast or replicatedlevels, respectively.For
Any: Numerator is the number of patients with either single or replicated marked abnormalities.
Usage
s_count_abnormal_by_marked(
df,
.var = "AVALCAT1",
.spl_context,
category = list(single = "SINGLE", last_replicated = c("LAST", "REPLICATED")),
variables = list(id = "USUBJID", param = "PARAM", direction = "abn_dir")
)
a_count_abnormal_by_marked(
df,
.var = "AVALCAT1",
.spl_context,
category = list(single = "SINGLE", last_replicated = c("LAST", "REPLICATED")),
variables = list(id = "USUBJID", param = "PARAM", direction = "abn_dir")
)
count_abnormal_by_marked(
lyt,
var,
...,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)Arguments
- df
(
data.frame)
data set containing all analysis variables.- .var, var
(
string)
single variable name that is passed byrtableswhen requested by a statistics function.- .spl_context
(
data.frame)
gives information about ancestor split states that is passed byrtables.- category
(
list)
with different marked category names for single and last or replicated.- variables
(named
listofstring)
list of additional analysis variables.- lyt
(
layout)
input layout where analyses will be added to.- ...
additional arguments for the lower level functions.
- .stats
(
character)
statistics to select for the table.- .formats
(named
characterorlist)
formats for the statistics.- .labels
(named
character)
labels for the statistics (without indent).- .indent_mods
(named
integer)
indent modifiers for the labels.
Value
s_count_abnormal_by_marked() the single statistic count_fraction
with Single, not last, Last or replicated and Any results.
a_count_abnormal_by_marked() returns the corresponding list with formatted rtables::CellValue().
Details
Note that Single, not last and Last or replicated levels are
mutually exclusive. If a patient has abnormalities that meet both the Single, not last
and Last or replicated criteria, then the patient will be counted only under the Last or replicated category.
Functions
s_count_abnormal_by_marked(): Statistics function which returns the counts and fractions of patients withSingle, not last,Last or replicatedandAnymarked laboratory abnormalities for a singleabnormallevel.a_count_abnormal_by_marked(): Formatted Analysis function which can be further customized by callingrtables::make_afun()on it. It is used asafuninrtables::analyze().count_abnormal_by_marked(): Layout creating function which can be used for creating tables, which can take statistics function arguments and additional format arguments (see below).
Examples
library(dplyr)
df <- data.frame(
USUBJID = as.character(c(rep(1, 5), rep(2, 5), rep(1, 5), rep(2, 5))),
ARMCD = factor(c(rep("ARM A", 5), rep("ARM B", 5), rep("ARM A", 5), rep("ARM B", 5))),
ANRIND = factor(c(
"NORMAL", "HIGH", "HIGH", "HIGH HIGH", "HIGH",
"HIGH", "HIGH", "HIGH HIGH", "NORMAL", "HIGH HIGH", "NORMAL", "LOW", "LOW", "LOW LOW", "LOW",
"LOW", "LOW", "LOW LOW", "NORMAL", "LOW LOW"
)),
ONTRTFL = rep(c("", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y"), 2),
PARAMCD = factor(c(rep("CRP", 10), rep("ALT", 10))),
AVALCAT1 = factor(rep(c("", "", "", "SINGLE", "REPLICATED", "", "", "LAST", "", "SINGLE"), 2)),
stringsAsFactors = FALSE
)
df <- df %>%
mutate(abn_dir = factor(
case_when(
ANRIND == "LOW LOW" ~ "Low",
ANRIND == "HIGH HIGH" ~ "High",
TRUE ~ ""
),
levels = c("Low", "High")
))
# Select only post-baseline records.
df <- df %>% filter(ONTRTFL == "Y")
df_crp <- df %>%
filter(PARAMCD == "CRP") %>%
droplevels()
full_parent_df <- list(df_crp, "not_needed")
cur_col_subset <- list(rep(TRUE, nrow(df_crp)), "not_needed")
spl_context <- data.frame(
split = c("PARAMCD", "GRADE_DIR"),
full_parent_df = I(full_parent_df),
cur_col_subset = I(cur_col_subset)
)
# Internal function - s_count_abnormal_by_marked
if (FALSE) {
s_count_abnormal_by_marked(
df = df_crp %>% filter(abn_dir == "High"),
.spl_context = spl_context,
.var = "AVALCAT1",
variables = list(id = "USUBJID", param = "PARAMCD", direction = "abn_dir")
)
}
# Internal function - a_count_abnormal_by_marked
if (FALSE) {
# Use the Formatted Analysis function for `analyze()`. We need to ungroup `count_fraction` first
# so that the `rtables` formatting function `format_count_fraction()` can be applied correctly.
afun <- make_afun(a_count_abnormal_by_marked, .ungroup_stats = "count_fraction")
afun(
df = df_crp %>% filter(abn_dir == "High"),
.spl_context = spl_context,
variables = list(id = "USUBJID", param = "PARAMCD", direction = "abn_dir")
)
}
map <- unique(
df[df$abn_dir %in% c("Low", "High") & df$AVALCAT1 != "", c("PARAMCD", "abn_dir")]
) %>%
lapply(as.character) %>%
as.data.frame() %>%
arrange(PARAMCD, abn_dir)
basic_table() %>%
split_cols_by("ARMCD") %>%
split_rows_by("PARAMCD") %>%
summarize_num_patients(
var = "USUBJID",
.stats = "unique_count"
) %>%
split_rows_by(
"abn_dir",
split_fun = trim_levels_to_map(map)
) %>%
count_abnormal_by_marked(
var = "AVALCAT1",
variables = list(
id = "USUBJID",
param = "PARAMCD",
direction = "abn_dir"
)
) %>%
build_table(df = df)
#> ARM A ARM B
#> ————————————————————————————————————————————
#> ALT (n) 1 1
#> Low
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)
#> CRP (n) 1 1
#> High
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)
basic_table() %>%
split_cols_by("ARMCD") %>%
split_rows_by("PARAMCD") %>%
summarize_num_patients(
var = "USUBJID",
.stats = "unique_count"
) %>%
split_rows_by(
"abn_dir",
split_fun = trim_levels_in_group("abn_dir")
) %>%
count_abnormal_by_marked(
var = "AVALCAT1",
variables = list(
id = "USUBJID",
param = "PARAMCD",
direction = "abn_dir"
)
) %>%
build_table(df = df)
#> ARM A ARM B
#> ————————————————————————————————————————————
#> ALT (n) 1 1
#> Low
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)
#> CRP (n) 1 1
#> High
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)