Helper Functions for Subgroup Treatment Effect Pattern (STEP) Calculations
Source:R/h_step.R
h_step.Rd
Usage
h_step_window(x, control = control_step())
h_step_trt_effect(data, model, variables, x)
h_step_survival_formula(variables, control = control_step())
h_step_survival_est(
formula,
data,
variables,
x,
subset = rep(TRUE, nrow(data)),
control = control_coxph()
)
h_step_rsp_formula(variables, control = c(control_step(), control_logistic()))
h_step_rsp_est(
formula,
data,
variables,
x,
subset = rep(TRUE, nrow(data)),
control = control_logistic()
)
Arguments
- x
(
numeric
)
biomarker value(s) to use (withoutNA
).- control
(named
list
)
output fromcontrol_step()
.- data
(
data.frame
)
the dataset containing the variables to summarize.- model
the regression model object.
- variables
(named
list
ofstring
)
list of additional analysis variables.- formula
(
formula
)
the regression model formula.- subset
(
logical
)
subset vector.
Functions
h_step_window()
: creates the windows for STEP, based on the control settings provided. Returns a list containing the window-selection matrixsel
and the interval information matrixinterval
.h_step_trt_effect()
: calculates the estimated treatment effect estimate on the linear predictor scale and corresponding standard error from a STEPmodel
fitted ondata
givenvariables
specification, for a single biomarker valuex
. This works for bothcoxph
andglm
models, i.e. for calculating log hazard ratio or log odds ratio estimates. It returns a vector with elementsest
andse
.h_step_survival_formula()
: builds the model formula used in survival STEP calculations.h_step_survival_est()
: estimates the model withformula
built based onvariables
indata
for a givensubset
andcontrol
parameters for the Cox regression, and returns a matrix of number of observationsn
,events
as well as log hazard ratio estimatesloghr
, standard errorse
and Wald confidence interval boundsci_lower
andci_upper
. One row is included here for each biomarker value inx
.h_step_rsp_formula()
: builds the model formula used in response STEP calculations.h_step_rsp_est()
: estimates the model withformula
built based onvariables
indata
for a givensubset
andcontrol
parameters for the logistic regression, and returns a matrix of number of observationsn
as well as log odds ratio estimateslogor
, standard errorse
and Wald confidence interval boundsci_lower
andci_upper
. One row is included here for each biomarker value inx
.