Usage
s_count_values(
x,
values,
na.rm = TRUE,
.N_col,
.N_row,
denom = c("n", "N_row", "N_col")
)
# S3 method for character
s_count_values(x, values = "Y", na.rm = TRUE, ...)
# S3 method for factor
s_count_values(x, values = "Y", ...)
# S3 method for logical
s_count_values(x, values = TRUE, ...)
a_count_values(
x,
values,
na.rm = TRUE,
.N_col,
.N_row,
denom = c("n", "N_row", "N_col")
)
count_values(
lyt,
vars,
values,
...,
table_names = vars,
.stats = "count_fraction",
.formats = NULL,
.labels = c(count_fraction = paste(values, collapse = ", ")),
.indent_mods = NULL
)
Arguments
- x
(
numeric
)
vector of numbers we want to analyze.- values
(
character
)
specific values that should be counted.- na.rm
(
flag
)
whetherNA
values should be removed fromx
prior to analysis.- .N_col
(
count
)
row-wise N (row group count) for the group of observations being analyzed (i.e. with no column-based subsetting) that is passed byrtables
.- .N_row
(
count
)
column-wise N (column count) for the full column that is passed byrtables
.- denom
-
(
string
)
choice of denominator for proportion. Options are:n
: number of values in this row and column intersection.N_row
: total number of values in this row across columns.N_col
: total number of values in this column across rows.
- ...
additional arguments for the lower level functions.
- lyt
(
layout
)
input layout where analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- table_names
(
character
)
this can be customized in case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels.
Value
See s_summary.logical()
for the returned statistics, as this is used inside.
Functions
s_count_values()
: Statistics Function which is a generic function to count values.s_count_values(character)
: Method forcharacter
vectorsx
.s_count_values(factor)
: method forfactor
vectorsx
. This checks whethervalues
are all included in the levels ofx
and fails otherwise. It then proceeds by converting tocharacter
and callings_count_values.character
.s_count_values(logical)
: method forlogical
vectorsx
.a_count_values()
: Formatted Analysis function which can be further customized by callingrtables::make_afun()
on it. It is used asafun
inrtables::analyze()
.count_values()
: Analyze Function which adds the counting analysis to the input layout. Note that additional formatting arguments can be used here.
Note
Variable labels are shown when there is more than one element in vars
, otherwise they
are hidden.
Examples
# `s_count_values.character`
s_count_values(x = c("a", "b", "a"), values = "a")
#> $n
#> [1] 3
#>
#> $count
#> [1] 2
#>
#> $count_fraction
#> [1] 2.0000000 0.6666667
#>
#> $n_blq
#> [1] 0
#>
s_count_values(x = c("a", "b", "a", NA, NA), values = "b", na.rm = FALSE)
#> $n
#> [1] 5
#>
#> $count
#> [1] 1
#>
#> $count_fraction
#> [1] 1.0 0.2
#>
#> $n_blq
#> [1] 0
#>
# `s_count_values.factor`
s_count_values(x = factor(c("a", "b", "a")), values = "a")
#> $n
#> [1] 3
#>
#> $count
#> [1] 2
#>
#> $count_fraction
#> [1] 2.0000000 0.6666667
#>
#> $n_blq
#> [1] 0
#>
# `s_count_values.logical`
s_count_values(x = c(TRUE, FALSE, TRUE))
#> $n
#> [1] 3
#>
#> $count
#> [1] 2
#>
#> $count_fraction
#> [1] 2.0000000 0.6666667
#>
#> $n_blq
#> [1] 0
#>
# `a_count_values`
a_count_values(x = factor(c("a", "b", "a")), values = "a", .N_col = 10, .N_row = 10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 3 0 n
#> 2 count 2 0 count
#> 3 count_fraction 2 (66.67%) 0 count_fraction
#> 4 n_blq 0 0 n_blq
# `count_values`
basic_table() %>%
count_values("Species", values = "setosa") %>%
build_table(iris)
#> all obs
#> ————————————————————
#> setosa 50 (33.33%)