Count Patients with Marked Laboratory Abnormalities
Source:R/abnormal_by_marked.R
abnormal_by_marked.Rd
Primary analysis variable .var
indicates whether single, replicated
or last marked laboratory abnormality was observed (factor).
Additional analysis variables are id
(character or factor) and direction
indicating
the direction of the abnormality (factor).
Denominator is number of patients with at least one valid measurement during
For
Single, not last
andLast or replicated
: Numerator is number of patients withSingle, not last
andLast or replicated
levels, respectively.For
Any
: Numerator is the number of patients with either single or replicated marked abnormalities.
Usage
s_count_abnormal_by_marked(
df,
.var = "AVALCAT1",
.spl_context,
category = list(single = "SINGLE", last_replicated = c("LAST", "REPLICATED")),
variables = list(id = "USUBJID", param = "PARAM", direction = "abn_dir")
)
a_count_abnormal_by_marked(
df,
.var = "AVALCAT1",
.spl_context,
category = list(single = "SINGLE", last_replicated = c("LAST", "REPLICATED")),
variables = list(id = "USUBJID", param = "PARAM", direction = "abn_dir")
)
count_abnormal_by_marked(
lyt,
var,
...,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
Arguments
- df
(
data.frame
)
data set containing all analysis variables.- .var, var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- .spl_context
(
data.frame
)
gives information about ancestor split states that is passed byrtables
.- category
(
list
)
with different marked category names for single and last or replicated.- variables
(named
list
ofstring
)
list of additional analysis variables.- lyt
(
layout
)
input layout where analyses will be added to.- ...
additional arguments for the lower level functions.
- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels.
Value
s_count_abnormal_by_marked()
the single statistic count_fraction
with Single, not last
, Last or replicated
and Any
results.
a_count_abnormal_by_marked()
returns the corresponding list with formatted rtables::CellValue()
.
Details
Note that Single, not last
and Last or replicated
levels are
mutually exclusive. If a patient has abnormalities that meet both the Single, not last
and Last or replicated
criteria, then the patient will be counted only under the Last or replicated
category.
Functions
s_count_abnormal_by_marked()
: Statistics function which returns the counts and fractions of patients withSingle, not last
,Last or replicated
andAny
marked laboratory abnormalities for a singleabnormal
level.a_count_abnormal_by_marked()
: Formatted Analysis function which can be further customized by callingrtables::make_afun()
on it. It is used asafun
inrtables::analyze()
.count_abnormal_by_marked()
: Layout creating function which can be used for creating tables, which can take statistics function arguments and additional format arguments (see below).
Examples
library(dplyr)
df <- data.frame(
USUBJID = as.character(c(rep(1, 5), rep(2, 5), rep(1, 5), rep(2, 5))),
ARMCD = factor(c(rep("ARM A", 5), rep("ARM B", 5), rep("ARM A", 5), rep("ARM B", 5))),
ANRIND = factor(c(
"NORMAL", "HIGH", "HIGH", "HIGH HIGH", "HIGH",
"HIGH", "HIGH", "HIGH HIGH", "NORMAL", "HIGH HIGH", "NORMAL", "LOW", "LOW", "LOW LOW", "LOW",
"LOW", "LOW", "LOW LOW", "NORMAL", "LOW LOW"
)),
ONTRTFL = rep(c("", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y"), 2),
PARAMCD = factor(c(rep("CRP", 10), rep("ALT", 10))),
AVALCAT1 = factor(rep(c("", "", "", "SINGLE", "REPLICATED", "", "", "LAST", "", "SINGLE"), 2)),
stringsAsFactors = FALSE
)
df <- df %>%
mutate(abn_dir = factor(
case_when(
ANRIND == "LOW LOW" ~ "Low",
ANRIND == "HIGH HIGH" ~ "High",
TRUE ~ ""
),
levels = c("Low", "High")
))
# Select only post-baseline records.
df <- df %>% filter(ONTRTFL == "Y")
df_crp <- df %>%
filter(PARAMCD == "CRP") %>%
droplevels()
full_parent_df <- list(df_crp, "not_needed")
cur_col_subset <- list(rep(TRUE, nrow(df_crp)), "not_needed")
spl_context <- data.frame(
split = c("PARAMCD", "GRADE_DIR"),
full_parent_df = I(full_parent_df),
cur_col_subset = I(cur_col_subset)
)
# Internal function - s_count_abnormal_by_marked
if (FALSE) {
s_count_abnormal_by_marked(
df = df_crp %>% filter(abn_dir == "High"),
.spl_context = spl_context,
.var = "AVALCAT1",
variables = list(id = "USUBJID", param = "PARAMCD", direction = "abn_dir")
)
}
# Internal function - a_count_abnormal_by_marked
if (FALSE) {
# Use the Formatted Analysis function for `analyze()`. We need to ungroup `count_fraction` first
# so that the `rtables` formatting function `format_count_fraction()` can be applied correctly.
afun <- make_afun(a_count_abnormal_by_marked, .ungroup_stats = "count_fraction")
afun(
df = df_crp %>% filter(abn_dir == "High"),
.spl_context = spl_context,
variables = list(id = "USUBJID", param = "PARAMCD", direction = "abn_dir")
)
}
map <- unique(
df[df$abn_dir %in% c("Low", "High") & df$AVALCAT1 != "", c("PARAMCD", "abn_dir")]
) %>%
lapply(as.character) %>%
as.data.frame() %>%
arrange(PARAMCD, abn_dir)
basic_table() %>%
split_cols_by("ARMCD") %>%
split_rows_by("PARAMCD") %>%
summarize_num_patients(
var = "USUBJID",
.stats = "unique_count"
) %>%
split_rows_by(
"abn_dir",
split_fun = trim_levels_to_map(map)
) %>%
count_abnormal_by_marked(
var = "AVALCAT1",
variables = list(
id = "USUBJID",
param = "PARAMCD",
direction = "abn_dir"
)
) %>%
build_table(df = df)
#> ARM A ARM B
#> ————————————————————————————————————————————
#> ALT (n) 1 1
#> Low
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)
#> CRP (n) 1 1
#> High
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)
basic_table() %>%
split_cols_by("ARMCD") %>%
split_rows_by("PARAMCD") %>%
summarize_num_patients(
var = "USUBJID",
.stats = "unique_count"
) %>%
split_rows_by(
"abn_dir",
split_fun = trim_levels_in_group("abn_dir")
) %>%
count_abnormal_by_marked(
var = "AVALCAT1",
variables = list(
id = "USUBJID",
param = "PARAMCD",
direction = "abn_dir"
)
) %>%
build_table(df = df)
#> ARM A ARM B
#> ————————————————————————————————————————————
#> ALT (n) 1 1
#> Low
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)
#> CRP (n) 1 1
#> High
#> Single, not last 1 (100%) 0
#> Last or replicated 0 1 (100%)
#> Any Abnormality 1 (100%) 1 (100%)