We use the new S3 generic function s_summary()
to implement summaries for
different x
objects. This is used as Statistics Function in combination
with the new Analyze Function summarize_vars()
.
Usage
s_summary(x, na.rm = TRUE, denom, .N_row, .N_col, na_level, .var, ...)
# S3 method for numeric
s_summary(
x,
na.rm = TRUE,
denom,
.N_row,
.N_col,
na_level,
.var,
control = control_summarize_vars(),
...
)
# S3 method for factor
s_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
na_level = "<Missing>",
...
)
# S3 method for character
s_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
na_level = "<Missing>",
.var,
verbose = TRUE,
...
)
# S3 method for logical
s_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
...
)
a_summary(x, ..., .N_row, .N_col, .var)
# S3 method for numeric
a_summary(
x,
na.rm = TRUE,
denom,
.N_row,
.N_col,
na_level,
.var,
control = control_summarize_vars(),
...
)
# S3 method for factor
a_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
na_level = "<Missing>",
...
)
# S3 method for character
a_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
na_level = "<Missing>",
.var,
verbose = TRUE,
...
)
# S3 method for logical
a_summary(
x,
na.rm = TRUE,
denom = c("n", "N_row", "N_col"),
.N_row,
.N_col,
...
)
create_afun_summary(.stats, .formats, .labels, .indent_mods)
summarize_vars(
lyt,
vars,
var_labels = vars,
nested = TRUE,
...,
show_labels = "default",
table_names = vars,
.stats = c("n", "mean_sd", "median", "range", "count_fraction"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
Arguments
- x
(
numeric
)
vector of numbers we want to analyze.- na.rm
(
flag
)
whetherNA
values should be removed fromx
prior to analysis.- denom
(
string
)
choice of denominator for proportion:
can ben
(number of values in this row and column intersection),N_row
(total number of values in this row across columns), orN_col
(total number of values in this column across rows).- .N_row
(
count
)
column-wise N (column count) for the full column that is passed byrtables
.- .N_col
(
count
)
row-wise N (row group count) for the group of observations being analyzed (i.e. with no column-based subsetting) that is passed byrtables
.- na_level
(
string
)
used to replace allNA
or empty values in factors.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- ...
arguments passed to
s_summary()
.- control
-
a (
list
) of parameters for descriptive statistics details, specified by using
the helper functioncontrol_summarize_vars()
. Some possible parameter options are:conf_level
: (proportion
)
confidence level of the interval for mean and median.quantiles
: numeric vector of length two to specify the quantiles.quantile_type
(numeric
)
between 1 and 9 selecting quantile algorithms to be used.
See more abouttype
instats::quantile()
.test_mean
: (numeric
)
to test against the mean under the null hypothesis when calculating p-value.
- verbose
defaults to
TRUE
. It prints out warnings and messages. It is mainly used to print out information about factor casting.- .stats
(
character
)
statistics to select for the table.- .formats
(named
character
orlist
)
formats for the statistics.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels.- lyt
(
layout
)
input layout where analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- var_labels
character for label.
- nested
boolean. Should this layout instruction be applied within the existing layout structure if possible (
TRUE
, the default) or as a new top-level element (`FALSE). Ignored if it would nest a split underneath analyses, which is not allowed.- show_labels
label visibility: one of "default", "visible" and "hidden".
- table_names
(
character
)
this can be customized in case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.
Value
If x
is of class numeric
, returns a list with named items:
n
: thelength()
ofx
.sum
: thesum()
ofx
.mean
: themean()
ofx
.sd
: thestats::sd()
ofx
.se
: the standard error ofx
mean, i.e.: (sd()/sqrt(length())]
).mean_sd
: themean()
andstats::sd()
ofx
.mean_se
: themean()
ofx
and its standard error (see above).mean_ci
: the CI for the mean ofx
(fromstat_mean_ci()
).mean_sei
: the SE interval for the mean ofx
, i.e.: (mean()
-/+stats::sd()
/sqrt()
).mean_sdi
: the SD interval for the mean ofx
, i.e.: (mean()
-/+stats::sd()
).mean_pval
: the two-sided p-value of the mean ofx
(fromstat_mean_pval()
).median
: thestats::median()
ofx
.mad
: the median absolute deviation ofx
, i.e.: (stats::median()
ofxc
, wherexc
=x
-stats::median()
).median_ci
: the CI for the median ofx
(fromstat_median_ci()
).quantiles
: two sample quantiles ofx
(fromstats::quantile()
).iqr
: thestats::IQR()
ofx
.range
: therange_noinf()
ofx
.min
: themax()
ofx
.max
: themin()
ofx
.cv
: the coefficient of variation ofx
, i.e.: (sd()/mean() * 100
).geom_mean
: the geometric mean ofx
, i.e.: (exp(mean(log(x)))
).geom_cv
: the geometric coefficient of variation ofx
, i.e.: (sqrt(exp(sd(log(x))^2) - 1)*100
).
If x
is of class factor
or converted from character
, returns a list with
named items:
n
: thelength()
ofx
.count
: a list with the number of cases for each level of the factorx
count_fraction
: similar tocount
but also includes the proportion of cases for each level of the factorx
relative to the denominator, orNA
if the denominator is zero.
If x
is of class logical
, returns a list with named items:
n
: thelength()
ofx
(possibly after removingNA
s).count
: count ofTRUE
inx
.count_fraction
: count and proportion ofTRUE
inx
relative to the denominator, orNA
if the denominator is zero. Note thatNA
s inx
are never counted or leading toNA
here.
Functions
s_summary()
:s_summary
is a S3 generic function to produce an object description.s_summary(numeric)
: Method for numeric class. Note that, ifx
is an empty vector,NA
is returned. This is the expected feature so as to returnrcell
content inrtables
when the intersection of a column and a row delimits an empty data selection. Also, when themean
function is applied to an empty vector,NA
will be returned instead ofNaN
, the latter being standard behavior in R.s_summary(factor)
: Method for factor class. Note that, ifx
is an empty factor, then still a list is returned forcounts
with one element per factor level. If there are no levels inx
, the function fails. Ifx
containsNA
, it is expected thatNA
have been conveyed tona_level
appropriately beforehand withdf_explicit_na()
orexplicit_na()
.s_summary(character)
: Method for character class. This makes an automatic conversion to factor (with a warning) and then forwards to the method for factors.s_summary(logical)
: Method for logical class.a_summary()
: S3 generic Formatted Analysis function to produce an object description. It is used asafun
inrtables::analyze()
.a_summary(numeric)
: Formatted Analysis function method fornumeric
.a_summary(factor)
: Method forfactor
.a_summary(character)
: Formatted Analysis function method forcharacter
.a_summary(logical)
: Formatted Analysis function method forlogical
.create_afun_summary()
: Constructor function which creates a combined Formatted Analysis function for use in layout creating functionssummarize_vars()
andsummarize_colvars()
.summarize_vars()
: Analyze Function to add a descriptive analyze layer tortables
pipelines. The analysis is applied to a vector and return the summary, inrcells
. The ellipsis (...
) conveys arguments tos_summary()
, for instancena.rm = FALSE
if missing data should be accounted for. When factor variables containsNA
, it is expected thatNA
have been conveyed tona_level
appropriately beforehand withdf_explicit_na()
.
Note
Automatic conversion of character to factor does not guarantee that the table
can be generated correctly. In particular for sparse tables this very likely can fail.
It is therefore better to always pre-process the dataset such that factors are manually
created from character variables before passing the dataset to rtables::build_table()
.
Since a_summary()
is generic and we want customization of the formatting arguments
via rtables::make_afun()
, we need to create another temporary generic function, with
corresponding customized methods. Then in order for the methods to be found,
we need to wrap them in a combined afun
. Since this is required by two layout creating
functions (and possibly others in the future), we provide a constructor that does this:
create_afun_summary()
.
Formatting arguments
These additional formatting arguments can be passed to the layout creating function:
- .stats
(
character
)
names of the statistics to use- .indent_mods
(
integer
)
named vector of indent modifiers for the labels- .formats
(
character
orlist
)
named vector of formats for the statistics- .labels
(
character
)
named vector of labels for the statistics (without indent)
Examples
# `s_summary.numeric`
## Basic usage: empty numeric returns NA-filled items.
s_summary(numeric())
#> $n
#> n
#> 0
#>
#> $sum
#> sum
#> NA
#>
#> $mean
#> mean
#> NA
#>
#> $sd
#> sd
#> NA
#>
#> $se
#> se
#> NA
#>
#> $mean_sd
#> mean sd
#> NA NA
#>
#> $mean_se
#> mean se
#> NA NA
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> NA
#>
#> $mad
#> mad
#> NA
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> NA
#>
#> $range
#> min max
#> NA NA
#>
#> $min
#> min
#> NA
#>
#> $max
#> max
#> NA
#>
#> $cv
#> cv
#> NA
#>
#> $geom_mean
#> geom_mean
#> NaN
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> NA
#>
## Management of NA values.
x <- c(NA_real_, 1)
s_summary(x, na.rm = TRUE)
#> $n
#> n
#> 1
#>
#> $sum
#> sum
#> 1
#>
#> $mean
#> mean
#> 1
#>
#> $sd
#> sd
#> NA
#>
#> $se
#> se
#> NA
#>
#> $mean_sd
#> mean sd
#> 1 NA
#>
#> $mean_se
#> mean se
#> 1 NA
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> 1
#>
#> $mad
#> mad
#> 0
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> 1 1
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> 0
#>
#> $range
#> min max
#> 1 1
#>
#> $min
#> min
#> 1
#>
#> $max
#> max
#> 1
#>
#> $cv
#> cv
#> NA
#>
#> $geom_mean
#> geom_mean
#> 1
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> NA
#>
s_summary(x, na.rm = FALSE)
#> $n
#> n
#> 2
#>
#> $sum
#> sum
#> NA
#>
#> $mean
#> mean
#> NA
#>
#> $sd
#> sd
#> NA
#>
#> $se
#> se
#> NA
#>
#> $mean_sd
#> mean sd
#> NA NA
#>
#> $mean_se
#> mean se
#> NA NA
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> NA
#>
#> $mad
#> mad
#> NA
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> NA
#>
#> $range
#> min max
#> NA NA
#>
#> $min
#> min
#> NA
#>
#> $max
#> max
#> NA
#>
#> $cv
#> cv
#> NA
#>
#> $geom_mean
#> geom_mean
#> NA
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> NA
#>
x <- c(NA_real_, 1, 2)
s_summary(x, stats = NULL)
#> $n
#> n
#> 2
#>
#> $sum
#> sum
#> 3
#>
#> $mean
#> mean
#> 1.5
#>
#> $sd
#> sd
#> 0.7071068
#>
#> $se
#> se
#> 0.5
#>
#> $mean_sd
#> mean sd
#> 1.5000000 0.7071068
#>
#> $mean_se
#> mean se
#> 1.5 0.5
#>
#> $mean_ci
#> mean_ci_lwr mean_ci_upr
#> -4.853102 7.853102
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> mean_sei_lwr mean_sei_upr
#> 1 2
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> 0.7928932 2.2071068
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> p_value
#> 0.2048328
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> median
#> 1.5
#>
#> $mad
#> mad
#> 0
#>
#> $median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $quantiles
#> quantile_0.25 quantile_0.75
#> 1 2
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> iqr
#> 1
#>
#> $range
#> min max
#> 1 2
#>
#> $min
#> min
#> 1
#>
#> $max
#> max
#> 2
#>
#> $cv
#> cv
#> 47.14045
#>
#> $geom_mean
#> geom_mean
#> 1.414214
#>
#> $geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> 0.01729978 115.60839614
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> geom_cv
#> 52.10922
#>
## Benefits in `rtables` contructions:
require(rtables)
dta_test <- data.frame(
Group = rep(LETTERS[1:3], each = 2),
sub_group = rep(letters[1:2], each = 3),
x = 1:6
)
## The summary obtained in with `rtables`:
basic_table() %>%
split_cols_by(var = "Group") %>%
split_rows_by(var = "sub_group") %>%
analyze(vars = "x", afun = s_summary) %>%
build_table(df = dta_test)
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> Warning: number of items to replace is not a multiple of replacement length
#> A B C
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————
#> a
#> n 2 1 0
#> sum 3 3 NA
#> mean 1.5 3 NA
#> sd 0.707106781186548 NA NA
#> se 0.5 NA NA
#> mean_sd 1.5, 0.707106781186548 3, NA NA
#> mean_se 1.5, 0.5 3, NA NA
#> Mean 95% CI -4.85310236808735, 7.85310236808735 NA NA
#> Mean -/+ 1xSE 1, 2 NA NA
#> Mean -/+ 1xSD 0.792893218813452, 2.20710678118655 NA NA
#> Mean p-value (H0: mean = 0) 0.204832764699133 NA NA
#> median 1.5 3 NA
#> mad 0 0 NA
#> Median 95% CI NA NA NA
#> 25% and 75%-ile 1, 2 3, 3 NA
#> iqr 1 0 NA
#> range 1, 2 3, 3 NA
#> min 1 3 NA
#> max 2 3 NA
#> cv 47.1404520791032 NA NA
#> geom_mean 1.41421356237309 3 NA
#> Geometric Mean 95% CI 0.0172997815631007, 115.608396135236 NA NA
#> geom_cv 52.1092246837487 NA NA
#> b
#> n 0 1 2
#> sum NA 4 11
#> mean NA 4 5.5
#> sd NA NA 0.707106781186548
#> se NA NA 0.5
#> mean_sd NA 4, NA 5.5, 0.707106781186548
#> mean_se NA 4, NA 5.5, 0.5
#> Mean 95% CI NA NA -0.853102368087347, 11.8531023680873
#> Mean -/+ 1xSE NA NA 5, 6
#> Mean -/+ 1xSD NA NA 4.79289321881345, 6.20710678118655
#> Mean p-value (H0: mean = 0) NA NA 0.0577158767526089
#> median NA 4 5.5
#> mad NA 0 0
#> Median 95% CI NA NA NA
#> 25% and 75%-ile NA 4, 4 5, 6
#> iqr NA 0 1
#> range NA 4, 4 5, 6
#> min NA 4 5
#> max NA 4 6
#> cv NA NA 12.8564869306645
#> geom_mean NA 4 5.47722557505166
#> Geometric Mean 95% CI NA NA 1.71994304449266, 17.4424380482025
#> geom_cv NA NA 12.945835316564
## By comparison with `lapply`:
X <- split(dta_test, f = with(dta_test, interaction(Group, sub_group)))
lapply(X, function(x) s_summary(x$x))
#> $A.a
#> $A.a$n
#> n
#> 2
#>
#> $A.a$sum
#> sum
#> 3
#>
#> $A.a$mean
#> mean
#> 1.5
#>
#> $A.a$sd
#> sd
#> 0.7071068
#>
#> $A.a$se
#> se
#> 0.5
#>
#> $A.a$mean_sd
#> mean sd
#> 1.5000000 0.7071068
#>
#> $A.a$mean_se
#> mean se
#> 1.5 0.5
#>
#> $A.a$mean_ci
#> mean_ci_lwr mean_ci_upr
#> -4.853102 7.853102
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $A.a$mean_sei
#> mean_sei_lwr mean_sei_upr
#> 1 2
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $A.a$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> 0.7928932 2.2071068
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $A.a$mean_pval
#> p_value
#> 0.2048328
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $A.a$median
#> median
#> 1.5
#>
#> $A.a$mad
#> mad
#> 0
#>
#> $A.a$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $A.a$quantiles
#> quantile_0.25 quantile_0.75
#> 1 2
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $A.a$iqr
#> iqr
#> 1
#>
#> $A.a$range
#> min max
#> 1 2
#>
#> $A.a$min
#> min
#> 1
#>
#> $A.a$max
#> max
#> 2
#>
#> $A.a$cv
#> cv
#> 47.14045
#>
#> $A.a$geom_mean
#> geom_mean
#> 1.414214
#>
#> $A.a$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> 0.01729978 115.60839614
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $A.a$geom_cv
#> geom_cv
#> 52.10922
#>
#>
#> $B.a
#> $B.a$n
#> n
#> 1
#>
#> $B.a$sum
#> sum
#> 3
#>
#> $B.a$mean
#> mean
#> 3
#>
#> $B.a$sd
#> sd
#> NA
#>
#> $B.a$se
#> se
#> NA
#>
#> $B.a$mean_sd
#> mean sd
#> 3 NA
#>
#> $B.a$mean_se
#> mean se
#> 3 NA
#>
#> $B.a$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $B.a$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $B.a$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $B.a$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $B.a$median
#> median
#> 3
#>
#> $B.a$mad
#> mad
#> 0
#>
#> $B.a$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $B.a$quantiles
#> quantile_0.25 quantile_0.75
#> 3 3
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $B.a$iqr
#> iqr
#> 0
#>
#> $B.a$range
#> min max
#> 3 3
#>
#> $B.a$min
#> min
#> 3
#>
#> $B.a$max
#> max
#> 3
#>
#> $B.a$cv
#> cv
#> NA
#>
#> $B.a$geom_mean
#> geom_mean
#> 3
#>
#> $B.a$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $B.a$geom_cv
#> geom_cv
#> NA
#>
#>
#> $C.a
#> $C.a$n
#> n
#> 0
#>
#> $C.a$sum
#> sum
#> NA
#>
#> $C.a$mean
#> mean
#> NA
#>
#> $C.a$sd
#> sd
#> NA
#>
#> $C.a$se
#> se
#> NA
#>
#> $C.a$mean_sd
#> mean sd
#> NA NA
#>
#> $C.a$mean_se
#> mean se
#> NA NA
#>
#> $C.a$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $C.a$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $C.a$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $C.a$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $C.a$median
#> median
#> NA
#>
#> $C.a$mad
#> mad
#> NA
#>
#> $C.a$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $C.a$quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $C.a$iqr
#> iqr
#> NA
#>
#> $C.a$range
#> min max
#> NA NA
#>
#> $C.a$min
#> min
#> NA
#>
#> $C.a$max
#> max
#> NA
#>
#> $C.a$cv
#> cv
#> NA
#>
#> $C.a$geom_mean
#> geom_mean
#> NaN
#>
#> $C.a$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $C.a$geom_cv
#> geom_cv
#> NA
#>
#>
#> $A.b
#> $A.b$n
#> n
#> 0
#>
#> $A.b$sum
#> sum
#> NA
#>
#> $A.b$mean
#> mean
#> NA
#>
#> $A.b$sd
#> sd
#> NA
#>
#> $A.b$se
#> se
#> NA
#>
#> $A.b$mean_sd
#> mean sd
#> NA NA
#>
#> $A.b$mean_se
#> mean se
#> NA NA
#>
#> $A.b$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $A.b$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $A.b$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $A.b$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $A.b$median
#> median
#> NA
#>
#> $A.b$mad
#> mad
#> NA
#>
#> $A.b$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $A.b$quantiles
#> quantile_0.25 quantile_0.75
#> NA NA
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $A.b$iqr
#> iqr
#> NA
#>
#> $A.b$range
#> min max
#> NA NA
#>
#> $A.b$min
#> min
#> NA
#>
#> $A.b$max
#> max
#> NA
#>
#> $A.b$cv
#> cv
#> NA
#>
#> $A.b$geom_mean
#> geom_mean
#> NaN
#>
#> $A.b$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $A.b$geom_cv
#> geom_cv
#> NA
#>
#>
#> $B.b
#> $B.b$n
#> n
#> 1
#>
#> $B.b$sum
#> sum
#> 4
#>
#> $B.b$mean
#> mean
#> 4
#>
#> $B.b$sd
#> sd
#> NA
#>
#> $B.b$se
#> se
#> NA
#>
#> $B.b$mean_sd
#> mean sd
#> 4 NA
#>
#> $B.b$mean_se
#> mean se
#> 4 NA
#>
#> $B.b$mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $B.b$mean_sei
#> mean_sei_lwr mean_sei_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $B.b$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> NA NA
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $B.b$mean_pval
#> p_value
#> NA
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $B.b$median
#> median
#> 4
#>
#> $B.b$mad
#> mad
#> 0
#>
#> $B.b$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $B.b$quantiles
#> quantile_0.25 quantile_0.75
#> 4 4
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $B.b$iqr
#> iqr
#> 0
#>
#> $B.b$range
#> min max
#> 4 4
#>
#> $B.b$min
#> min
#> 4
#>
#> $B.b$max
#> max
#> 4
#>
#> $B.b$cv
#> cv
#> NA
#>
#> $B.b$geom_mean
#> geom_mean
#> 4
#>
#> $B.b$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> NA NA
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $B.b$geom_cv
#> geom_cv
#> NA
#>
#>
#> $C.b
#> $C.b$n
#> n
#> 2
#>
#> $C.b$sum
#> sum
#> 11
#>
#> $C.b$mean
#> mean
#> 5.5
#>
#> $C.b$sd
#> sd
#> 0.7071068
#>
#> $C.b$se
#> se
#> 0.5
#>
#> $C.b$mean_sd
#> mean sd
#> 5.5000000 0.7071068
#>
#> $C.b$mean_se
#> mean se
#> 5.5 0.5
#>
#> $C.b$mean_ci
#> mean_ci_lwr mean_ci_upr
#> -0.8531024 11.8531024
#> attr(,"label")
#> [1] "Mean 95% CI"
#>
#> $C.b$mean_sei
#> mean_sei_lwr mean_sei_upr
#> 5 6
#> attr(,"label")
#> [1] "Mean -/+ 1xSE"
#>
#> $C.b$mean_sdi
#> mean_sdi_lwr mean_sdi_upr
#> 4.792893 6.207107
#> attr(,"label")
#> [1] "Mean -/+ 1xSD"
#>
#> $C.b$mean_pval
#> p_value
#> 0.05771588
#> attr(,"label")
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $C.b$median
#> median
#> 5.5
#>
#> $C.b$mad
#> mad
#> 0
#>
#> $C.b$median_ci
#> median_ci_lwr median_ci_upr
#> NA NA
#> attr(,"conf_level")
#> [1] NA
#> attr(,"label")
#> [1] "Median 95% CI"
#>
#> $C.b$quantiles
#> quantile_0.25 quantile_0.75
#> 5 6
#> attr(,"label")
#> [1] "25% and 75%-ile"
#>
#> $C.b$iqr
#> iqr
#> 1
#>
#> $C.b$range
#> min max
#> 5 6
#>
#> $C.b$min
#> min
#> 5
#>
#> $C.b$max
#> max
#> 6
#>
#> $C.b$cv
#> cv
#> 12.85649
#>
#> $C.b$geom_mean
#> geom_mean
#> 5.477226
#>
#> $C.b$geom_mean_ci
#> mean_ci_lwr mean_ci_upr
#> 1.719943 17.442438
#> attr(,"label")
#> [1] "Geometric Mean 95% CI"
#>
#> $C.b$geom_cv
#> geom_cv
#> 12.94584
#>
#>
# `s_summary.factor`
## Basic usage:
s_summary(factor(c("a", "a", "b", "c", "a")))
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#>
#> $count_fraction$b
#> [1] 1.0 0.2
#>
#> $count_fraction$c
#> [1] 1.0 0.2
#>
#>
#> $n_blq
#> [1] 0
#>
# Empty factor returns NA-filled items.
s_summary(factor(levels = c("a", "b", "c")))
#> $n
#> [1] 0
#>
#> $count
#> $count$a
#> [1] 0
#>
#> $count$b
#> [1] 0
#>
#> $count$c
#> [1] 0
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 0 0
#>
#> $count_fraction$b
#> [1] 0 0
#>
#> $count_fraction$c
#> [1] 0 0
#>
#>
#> $n_blq
#> [1] 0
#>
## Management of NA values.
x <- factor(c(NA, "Female"))
x <- explicit_na(x)
s_summary(x, na.rm = TRUE)
#> $n
#> [1] 1
#>
#> $count
#> $count$Female
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$Female
#> [1] 1 1
#>
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, na.rm = FALSE)
#> $n
#> [1] 2
#>
#> $count
#> $count$Female
#> [1] 1
#>
#> $count$`<Missing>`
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$Female
#> [1] 1.0 0.5
#>
#> $count_fraction$`<Missing>`
#> [1] 1.0 0.5
#>
#>
#> $n_blq
#> [1] 0
#>
## Different denominators.
x <- factor(c("a", "a", "b", "c", "a"))
s_summary(x, denom = "N_row", .N_row = 10L)
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.3
#>
#> $count_fraction$b
#> [1] 1.0 0.1
#>
#> $count_fraction$c
#> [1] 1.0 0.1
#>
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, denom = "N_col", .N_col = 20L)
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.00 0.15
#>
#> $count_fraction$b
#> [1] 1.00 0.05
#>
#> $count_fraction$c
#> [1] 1.00 0.05
#>
#>
#> $n_blq
#> [1] 0
#>
# `s_summary.character`
## Basic usage:
s_summary(c("a", "a", "b", "c", "a"), .var = "x", verbose = FALSE)
#> $n
#> [1] 5
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.6
#>
#> $count_fraction$b
#> [1] 1.0 0.2
#>
#> $count_fraction$c
#> [1] 1.0 0.2
#>
#>
#> $n_blq
#> [1] 0
#>
s_summary(c("a", "a", "b", "c", "a", ""), .var = "x", na.rm = FALSE, verbose = FALSE)
#> $n
#> [1] 6
#>
#> $count
#> $count$a
#> [1] 3
#>
#> $count$b
#> [1] 1
#>
#> $count$c
#> [1] 1
#>
#> $count$`<Missing>`
#> [1] 1
#>
#>
#> $count_fraction
#> $count_fraction$a
#> [1] 3.0 0.5
#>
#> $count_fraction$b
#> [1] 1.0000000 0.1666667
#>
#> $count_fraction$c
#> [1] 1.0000000 0.1666667
#>
#> $count_fraction$`<Missing>`
#> [1] 1.0000000 0.1666667
#>
#>
#> $n_blq
#> [1] 0
#>
# `s_summary.logical`
## Basic usage:
s_summary(c(TRUE, FALSE, TRUE, TRUE))
#> $n
#> [1] 4
#>
#> $count
#> [1] 3
#>
#> $count_fraction
#> [1] 3.00 0.75
#>
#> $n_blq
#> [1] 0
#>
## Management of NA values.
x <- c(NA, TRUE, FALSE)
s_summary(x, na.rm = TRUE)
#> $n
#> [1] 2
#>
#> $count
#> [1] 1
#>
#> $count_fraction
#> [1] 1.0 0.5
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, na.rm = FALSE)
#> $n
#> [1] 3
#>
#> $count
#> [1] 1
#>
#> $count_fraction
#> [1] 1.0000000 0.3333333
#>
#> $n_blq
#> [1] 0
#>
## Different denominators.
x <- c(TRUE, FALSE, TRUE, TRUE)
s_summary(x, denom = "N_row", .N_row = 10L)
#> $n
#> [1] 4
#>
#> $count
#> [1] 3
#>
#> $count_fraction
#> [1] 3.0 0.3
#>
#> $n_blq
#> [1] 0
#>
s_summary(x, denom = "N_col", .N_col = 20L)
#> $n
#> [1] 4
#>
#> $count
#> [1] 3
#>
#> $count_fraction
#> [1] 3.00 0.15
#>
#> $n_blq
#> [1] 0
#>
# `a_summary.numeric`
a_summary(rnorm(10), .N_col = 10, .N_row = 20, .var = "bla")
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 10 0 n
#> 2 sum 1.1 0 Sum
#> 3 mean 0.1 0 Mean
#> 4 sd 1.0 0 SD
#> 5 se 0.3 0 SE
#> 6 mean_sd 0.1 (1.0) 0 Mean (SD)
#> 7 mean_se 0.1 (0.3) 0 Mean (SE)
#> 8 mean_ci (-0.63, 0.86) 0 Mean 95% CI
#> 9 mean_sei (-0.22, 0.44) 0 Mean -/+ 1xSE
#> 10 mean_sdi (-0.93, 1.16) 0 Mean -/+ 1xSD
#> 11 mean_pval 0.74 0 Mean p-value (H0: mean = 0)
#> 12 median 0.2 0 Median
#> 13 mad 0.0 0 Median Absolute Deviation
#> 14 median_ci (-0.62, 1.12) 0 Median 95% CI
#> 15 quantiles -0.3 - 0.7 0 25% and 75%-ile
#> 16 iqr 1.0 0 IQR
#> 17 range -2.2 - 1.5 0 Min - Max
#> 18 min -2.2 0 Minimum
#> 19 max 1.5 0 Maximum
#> 20 cv 918.5 0 CV (%)
#> 21 geom_mean NA 0 Geometric Mean
#> 22 geom_mean_ci NA 0 Geometric Mean 95% CI
#> 23 geom_cv NA 0 CV % Geometric Mean
# `a_summary.factor`
# We need to ungroup `count` and `count_fraction` first so that the rtables formatting
# functions can be applied correctly.
afun <- make_afun(
getS3method("a_summary", "factor"),
.ungroup_stats = c("count", "count_fraction")
)
afun(factor(c("a", "a", "b", "c", "a")), .N_row = 10, .N_col = 10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 5 0 n
#> 2 a 3 0 a
#> 3 b 1 0 b
#> 4 c 1 0 c
#> 5 a 3 (60%) 0 a
#> 6 b 1 (20%) 0 b
#> 7 c 1 (20%) 0 c
#> 8 n_blq 0 0 n_blq
# `a_summary.character`
afun <- make_afun(
getS3method("a_summary", "character"),
.ungroup_stats = c("count", "count_fraction")
)
afun(c("A", "B", "A", "C"), .var = "x", .N_col = 10, .N_row = 10, verbose = FALSE)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 4 0 n
#> 2 A 2 0 A
#> 3 B 1 0 B
#> 4 C 1 0 C
#> 5 A 2 (50%) 0 A
#> 6 B 1 (25%) 0 B
#> 7 C 1 (25%) 0 C
#> 8 n_blq 0 0 n_blq
# `a_summary.logical`
afun <- make_afun(
getS3method("a_summary", "logical")
)
afun(c(TRUE, FALSE, FALSE, TRUE, TRUE), .N_row = 10, .N_col = 10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 5 0 n
#> 2 count 3 0 count
#> 3 count_fraction 3 (60%) 0 count_fraction
#> 4 n_blq 0 0 n_blq
# `create_afun_summary()` to create combined `afun`
afun <- create_afun_summary(
.stats = NULL,
.formats = c(median = "xx."),
.labels = c(median = "My median"),
.indent_mods = c(median = 1L)
)
## Fabricated dataset.
dta_test <- data.frame(
USUBJID = rep(1:6, each = 3),
PARAMCD = rep("lab", 6 * 3),
AVISIT = rep(paste0("V", 1:3), 6),
ARM = rep(LETTERS[1:3], rep(6, 3)),
AVAL = c(9:1, rep(NA, 9))
)
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
analyze(vars = "AVAL", afun = afun)
build_table(l, df = dta_test)
#> A B C
#> ————————————————————————————————————————————————————————————————
#> V1
#> n 2 1 0
#> Sum 15.0 3.0 NA
#> Mean 7.5 3.0 NA
#> SD 2.1 NA NA
#> SE 1.5 NA NA
#> Mean (SD) 7.5 (2.1) 3.0 (NA) NA
#> Mean (SE) 7.5 (1.5) 3.0 (NA) NA
#> Mean 95% CI (-11.56, 26.56) NA NA
#> Mean -/+ 1xSE (6.00, 9.00) NA NA
#> Mean -/+ 1xSD (5.38, 9.62) NA NA
#> Mean p-value (H0: mean = 0) 0.13 NA NA
#> My median 8 3 NA
#> Median Absolute Deviation 0.0 0.0 NA
#> Median 95% CI NA NA NA
#> 25% and 75%-ile 6.0 - 9.0 3.0 - 3.0 NA
#> IQR 3.0 0.0 NA
#> Min - Max 6.0 - 9.0 3.0 - 3.0 NA
#> CV (%) 28.3 NA NA
#> Minimum 6.0 3.0 NA
#> Maximum 9.0 3.0 NA
#> Geometric Mean 7.3 3.0 NA
#> CV % Geometric Mean 29.3 NA NA
#> V2
#> n 2 1 0
#> Sum 13.0 2.0 NA
#> Mean 6.5 2.0 NA
#> SD 2.1 NA NA
#> SE 1.5 NA NA
#> Mean (SD) 6.5 (2.1) 2.0 (NA) NA
#> Mean (SE) 6.5 (1.5) 2.0 (NA) NA
#> Mean 95% CI (-12.56, 25.56) NA NA
#> Mean -/+ 1xSE (5.00, 8.00) NA NA
#> Mean -/+ 1xSD (4.38, 8.62) NA NA
#> Mean p-value (H0: mean = 0) 0.14 NA NA
#> My median 6 2 NA
#> Median Absolute Deviation 0.0 0.0 NA
#> Median 95% CI NA NA NA
#> 25% and 75%-ile 5.0 - 8.0 2.0 - 2.0 NA
#> IQR 3.0 0.0 NA
#> Min - Max 5.0 - 8.0 2.0 - 2.0 NA
#> CV (%) 32.6 NA NA
#> Minimum 5.0 2.0 NA
#> Maximum 8.0 2.0 NA
#> Geometric Mean 6.3 2.0 NA
#> CV % Geometric Mean 34.2 NA NA
#> V3
#> n 2 1 0
#> Sum 11.0 1.0 NA
#> Mean 5.5 1.0 NA
#> SD 2.1 NA NA
#> SE 1.5 NA NA
#> Mean (SD) 5.5 (2.1) 1.0 (NA) NA
#> Mean (SE) 5.5 (1.5) 1.0 (NA) NA
#> Mean 95% CI (-13.56, 24.56) NA NA
#> Mean -/+ 1xSE (4.00, 7.00) NA NA
#> Mean -/+ 1xSD (3.38, 7.62) NA NA
#> Mean p-value (H0: mean = 0) 0.17 NA NA
#> My median 6 1 NA
#> Median Absolute Deviation 0.0 0.0 NA
#> Median 95% CI NA NA NA
#> 25% and 75%-ile 4.0 - 7.0 1.0 - 1.0 NA
#> IQR 3.0 0.0 NA
#> Min - Max 4.0 - 7.0 1.0 - 1.0 NA
#> CV (%) 38.6 NA NA
#> Minimum 4.0 1.0 NA
#> Maximum 7.0 1.0 NA
#> Geometric Mean 5.3 1.0 NA
#> CV % Geometric Mean 41.2 NA NA
# `summarize_vars()` in `rtables` pipelines
## Default output within a `rtables` pipeline.
# dta_test <- <needs_to_be_inputted_to_work>
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
summarize_vars(vars = "AVAL")
build_table(l, df = dta_test)
#> A B C
#> ————————————————————————————————————————
#> V1
#> n 2 1 0
#> Mean (SD) 7.5 (2.1) 3.0 (NA) NA
#> Median 7.5 3.0 NA
#> Min - Max 6.0 - 9.0 3.0 - 3.0 NA
#> V2
#> n 2 1 0
#> Mean (SD) 6.5 (2.1) 2.0 (NA) NA
#> Median 6.5 2.0 NA
#> Min - Max 5.0 - 8.0 2.0 - 2.0 NA
#> V3
#> n 2 1 0
#> Mean (SD) 5.5 (2.1) 1.0 (NA) NA
#> Median 5.5 1.0 NA
#> Min - Max 4.0 - 7.0 1.0 - 1.0 NA
## Select and format statistics output.
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
summarize_vars(
vars = "AVAL",
.stats = c("n", "mean_sd", "quantiles"),
.formats = c("mean_sd" = "xx.x, xx.x"),
.labels = c(n = "n", mean_sd = "Mean, SD", quantiles = c("Q1 - Q3"))
)
results <- build_table(l, df = dta_test)
as_html(results)
#> <div class="rtables-all-parts-block rtables-container">
#> <table class="table table-condensed table-hover">
#> <tr>
#> <th style="white-space:pre;"></th>
#> <th class="text-center">A</th>
#> <th class="text-center">B</th>
#> <th class="text-center">C</th>
#> </tr>
#> <tr>
#> <td class="text-left">V1</td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">n</td>
#> <td class="text-center">2</td>
#> <td class="text-center">1</td>
#> <td class="text-center">0</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Mean, SD</td>
#> <td class="text-center">7.5, 2.1</td>
#> <td class="text-center">3.0, NA</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Q1 - Q3</td>
#> <td class="text-center">6.0 - 9.0</td>
#> <td class="text-center">3.0 - 3.0</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left">V2</td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">n</td>
#> <td class="text-center">2</td>
#> <td class="text-center">1</td>
#> <td class="text-center">0</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Mean, SD</td>
#> <td class="text-center">6.5, 2.1</td>
#> <td class="text-center">2.0, NA</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Q1 - Q3</td>
#> <td class="text-center">5.0 - 8.0</td>
#> <td class="text-center">2.0 - 2.0</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left">V3</td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> <td class="text-center"></td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">n</td>
#> <td class="text-center">2</td>
#> <td class="text-center">1</td>
#> <td class="text-center">0</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Mean, SD</td>
#> <td class="text-center">5.5, 2.1</td>
#> <td class="text-center">1.0, NA</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <tr>
#> <td class="text-left" style="padding-left: 3ch">Q1 - Q3</td>
#> <td class="text-center">4.0 - 7.0</td>
#> <td class="text-center">1.0 - 1.0</td>
#> <td class="text-center">NA</td>
#> </tr>
#> <caption style="caption-side:top;"><div class="rtables-titles-block rtables-container">
#> <div class="rtables-main-titles-block rtables-container">
#> <p class="rtables-main-title"></p>
#> </div>
#> <div class="rtables-subtitles-block rtables-container"></div>
#> </div>
#> </caption>
#> </table>
#> <div class="rtables-footers-block rtables-container"></div>
#> </div>
## Use arguments interpreted by `s_summary`.
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
split_rows_by(var = "AVISIT") %>%
summarize_vars(vars = "AVAL", na.rm = FALSE)
results <- build_table(l, df = dta_test)
## Handle `NA` levels first when summarizing factors.
dta_test$AVISIT <- NA_character_
dta_test <- df_explicit_na(dta_test)
l <- basic_table() %>%
split_cols_by(var = "ARM") %>%
summarize_vars(vars = "AVISIT", na.rm = FALSE)
results <- build_table(l, df = dta_test)
if (FALSE) {
Viewer(results)
}