Helper Functions for Tabulating Biomarker Effects on Survival by Subgroup
Source:R/h_survival_biomarkers_subgroups.R
h_survival_biomarkers_subgroups.RdHelper functions which are documented here separately to not confuse the user when reading about the user-facing functions.
Usage
h_surv_to_coxreg_variables(variables, biomarker)
h_coxreg_mult_cont_df(variables, data, control = control_coxreg())
h_tab_surv_one_biomarker(df, vars, time_unit)Arguments
- variables
(named
listofstring)
list of additional analysis variables.- biomarker
(
string)
the name of the biomarker variable.- data
(
data.frame)
the dataset containing the variables to summarize.- control
(
list)
a list of parameters as returned by the helper functioncontrol_coxreg().- df
(
data.frame)
results for a single biomarker, as part of what is returned byextract_survival_biomarkers()(it needs a couple of columns which are added by that high-level function relative to what is returned byh_coxreg_mult_cont_df(), see the example).- vars
(
character)
the name of statistics to be reported amongn_tot_events(total number of events per group),n_tot(total number of observations per group),median(median survival time),hr(hazard ratio),ci(confidence interval of hazard ratio) andpval(p value of the effect). Note, one of the statisticsn_totandn_tot_events, as well as bothhrandciare required.- time_unit
(
string)
label with unit of median survival time. DefaultNULLskips displaying unit.
Functions
h_surv_to_coxreg_variables(): helps with converting the "survival" function variable list to the "Cox regression" variable list. The reason is that currently there is an inconsistency between the variable names accepted byextract_survival_subgroups()andfit_coxreg_multivar().h_coxreg_mult_cont_df(): prepares estimates for number of events, patients and median survival times, as well as hazard ratio estimates, confidence intervals and p-values, for multiple biomarkers in a given single data set.variablescorresponds to names of variables found indata, passed as a named list and requires elementstte,is_event,biomarkers(vector of continuous biomarker variables) and optionallysubgroupsandstrat.h_tab_surv_one_biomarker(): prepares a single sub-table given adf_subcontaining the results for a single biomarker.
Examples
# Testing dataset.
library(scda)
library(dplyr)
library(forcats)
library(rtables)
adtte <- synthetic_cdisc_data("latest")$adtte
# Save variable labels before data processing steps.
adtte_labels <- formatters::var_labels(adtte, fill = FALSE)
adtte_f <- adtte %>%
filter(PARAMCD == "OS") %>%
mutate(
AVALU = as.character(AVALU),
is_event = CNSR == 0
)
labels <- c("AVALU" = adtte_labels[["AVALU"]], "is_event" = "Event Flag")
formatters::var_labels(adtte_f)[names(labels)] <- labels
# This is how the variable list is converted internally.
h_surv_to_coxreg_variables(
variables = list(
tte = "AVAL",
is_event = "EVNT",
covariates = c("A", "B"),
strata = "D"
),
biomarker = "AGE"
)
#> $time
#> [1] "AVAL"
#>
#> $event
#> [1] "EVNT"
#>
#> $arm
#> [1] "AGE"
#>
#> $covariates
#> [1] "A" "B"
#>
#> $strata
#> [1] "D"
#>
# For a single population, estimate separately the effects
# of two biomarkers.
df <- h_coxreg_mult_cont_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
biomarkers = c("BMRKR1", "AGE"),
covariates = "SEX",
strata = c("STRATA1", "STRATA2")
),
data = adtte_f
)
df
#> biomarker biomarker_label n_tot n_tot_events median hr
#> 1 BMRKR1 Continuous Level Biomarker 1 400 282 680.9598 0.9855566
#> 2 AGE Age 400 282 680.9598 1.0080554
#> lcl ucl conf_level pval pval_label
#> 1 0.9507602 1.021627 0.95 0.4276044 p-value (Wald)
#> 2 0.9925602 1.023793 0.95 0.3100440 p-value (Wald)
# If the data set is empty, still the corresponding rows with missings are returned.
h_coxreg_mult_cont_df(
variables = list(
tte = "AVAL",
is_event = "is_event",
biomarkers = c("BMRKR1", "AGE"),
covariates = "REGION1",
strata = c("STRATA1", "STRATA2")
),
data = adtte_f[NULL, ]
)
#> biomarker biomarker_label n_tot n_tot_events median hr lcl ucl
#> 1 BMRKR1 Continuous Level Biomarker 1 0 0 NA NA NA NA
#> 2 AGE Age 0 0 NA NA NA NA
#> conf_level pval pval_label
#> 1 0.95 NA p-value (Wald)
#> 2 0.95 NA p-value (Wald)
# Starting from above `df`, zoom in on one biomarker and add required columns.
df1 <- df[1, ]
df1$subgroup <- "All patients"
df1$row_type <- "content"
df1$var <- "ALL"
df1$var_label <- "All patients"
h_tab_surv_one_biomarker(
df1,
vars = c("n_tot", "n_tot_events", "median", "hr", "ci", "pval"),
time_unit = "days"
)
#> Total n Total Events Median (days) Hazard Ratio 95% Wald CI p-value (Wald)
#> ————————————————————————————————————————————————————————————————————————————————————————————————————
#> All patients 400 282 681.0 0.99 (0.95, 1.02) 0.4276